
E - B O O K

I N T R O D U C T I O N T O
G A M E L E V E L D E S I G N

U N I T Y 2 0 2 2 L T S E D I T I O N

Contents

Introduction. . 3

Contributors. . 4

Part I: Introduction to level design in game development 5

Common terms used in level design. . 5

Preproduction. . 8

Coherent design. . 8

Research and references guide . . 9

Know your audience. . 10

The 3Cs: Camera, character, and control 12

Camera. . 12

Character . . 12

Control. 13

Metrics . . 14

Paper design. . 16

Identify and understand the different game mechanics. . 17

Test the game mechanics in a gym/zoo. 18

Pacing and gameplay beats . . 19

A living world: Environmental storytelling 20

Production. . 21

White-boxing: Blocking out your level 21

Give descriptive names to blocky assets. 22

Add Materials to blocky assets to

visualize your intention . . 23

Avoid creating detailed art assets 23

Ask a concept artist for help. 23

Ready-made assets can also help. 24

Player pathing. . 25

Critical path . . 25

Golden path . . 26

Secondary and tertiary paths: Side quests, secrets, and
shortcuts. . 26

The rule of three for teaching mechanics to players . . . 27

Subverting expectations. . 28

Line of sight and blind spots. . 29

Get the player’s attention . . 29

Lighting and space. . 30

Physical blockers. . 30

Signposting. . 31

Sound . . 32

Spawn points . . 32

Save points and checkpoints . . 32

Save points. . 33

Checkpoints. . 33

Avoid soft-locking . . 33

Mindful placement of save points and checkpoints. . . . 34

Procedural level design. . 34

Procedural generation rules . . 35

Automated testing. . 36

Test, test, and test again. . 36

Part II: Introduction to Unity for level designers. 37

Install Unity. . 37

The Unity Editor. . 39

Package Manager. . 41

GameObjects . . 41

Manipulating GameObjects in the Scene view 42

Creating GameObjects. . 44

Static and dynamic GameObjects. 44

Active/inactive GameObjects . . 45

Tags. . 45

Prefabs: Reusable GameObjects. 45

3D or 2D . . 48

3D assets . . 48

File formats. . 49

2D assets . . 49

File formats. . 50

Coding. . 51

Quick overview of C#. . 51

Creating a new script. . 52

A script example. . 53

Learn resources. . 54

Unity Visual Scripting. . 54

Creating a new Script Graph. 55

Variables in Visual Scripting 56

State Machines with State Graph. 58

More resources . . 59

Physics . . 59

Creating collisions . . 60

Collider component. . 60

Rigidbody component. . 60

Trigger colliders. . 63

Physics layers. . 63

Level design with physics. . 64

Physics refresh rate. . 65

Animation . . 66

The animation system. . 66

Animation window. . 67

Animation State Machine. . 68

Timeline. . 69

More resources. . 69

The Unity Asset Store . . 70

Part III: Level design tools in Unity. . 71

Starter assets. . 71

ProBuilder. . 74

Smoothing groups. . 88

UV Editor. . 90

Quick texturing exercise . . 91

Tip: Color coding for fast level design. 93

Tip: Enable dimension overlays for ProBuilder. 93

Sharing ProBuilder levels with environment artists. 94

Polybrush . . 95

Quick tip: visualizers . . 97

3D object text. . 97

Custom icon for GameObjects . . 97

Splines. . 98

Terrain. . 100

2D Tilemap. . 102

2D Tilemap extras . . 104

Pathfinding with AI Navigation. . 105

The Navigation window: Agents and areas. 106

Three steps to creating navigable

paths with AI Navigation. . 107

Level design tools quick reference. 109

Additional level design resources. . 111

Professional training for Unity creators. 111

3 of 112 | unity.com© 2023 Unity Technologies

I N T R O D U C T I O N

Creators of virtual worlds and wizards of spatial awareness: Level designers are
the master builders in game development, tasked with the coherent layout and
composition of fully realized playable spaces.

This three-part guide is intended for both aspiring and experienced level
designers. It was written by level and game designers, both within Unity and
from professional game development teams.

Unity is the most widely used game development platform, so gaining Unity
skills can open up new opportunities for you, even if you work on a team using
another engine.

What’s in this guide?

Part I provides an introduction to where, and how, the work of level designers
fits into the game development production cycle. Topics covered include
researching and developing an idea, prototyping designs with white- or grey-
boxing, and working with the fundamental elements of level design, such as
player paths, lighting, clues, and points gathering.

Part II is an introduction to the Unity Editor, the building blocks for adding
elements and interactivity to a scene in Unity, and working with assets,
scripting, physics and animation.

Part III provides detailed instructions on how to use the ProBuilder and
Polybrush toolsets, an introduction to the Unity Terrain system, and
recommendations for tools available from the Unity Asset Store.

https://unity.com/

4 of 112 | unity.com© 2023 Unity Technologies

This e-book complements The Unity game designer playbook, which provides a
broader overview of Unity tools for game and level designers, as well as expert
tips for designing gameplay.

Contributors

Christo Nobbs is a senior technical game designer who specializes in systems
game design and Unity (C#). Christo has been using Unity since Unity 4 and
worked previously as a technical game designer at PUBG/PlayerUnknown
Productions.

Stefan Horvath has over 10 years of experience in the game development
industry with experience in level and game design, as well as quality assurance.
He’s worked on titles such as Star Citizen by Cloud Imperium Games, Dead by
Daylight by Behaviour Interactive, and 505 Games, and Tribes of Midgard by
Norsfell Games Inc.

Eduardo Oriz is a senior content marketing manager at Unity who has many
years of experience working with Unity development teams like the 2D tools
group to bring advanced instructional content to game developers and studios.

Monument Valley 2 by Ustwo Games is a puzzler that makes inventive use of 3D space.

https://unity.com/
https://resources.unity.com/games/game-designer-playbook?ungated=true%3Futm_source&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://twitter.com/CH71ST0
https://www.linkedin.com/in/stefan-horvath94/
https://twitter.com/EduOriz

5 of 112 | unity.com© 2023 Unity Technologies

P A R T I :
I N T R O D U C T I O N
T O L E V E L D E S I G N I N
G A M E D E V E L O P M E N T

Level design terms Description

3Cs This stands for character, camera, and control.
3Cs are used to quickly describe the complex,
interdependent relationship between players’
inputs and their onscreen characters’ reactions,
and how that character is captured in the frame of
the game’s camera (Source: Pluralsight).

Affordance The quality or property of an object that defines its
possible uses or makes clear how it can or should
be used. (Source: Merriam-Webster).

AI In games, AI (artificial intelligence) is an in-game
entity whose functionality is dependent on
computer code rather than human input. NPCs are
common AI entities.

Blockout A process of creating very simple level
environment designs using primitive geometric
shapes and game art (similar to a mockup).

Color coding Marking elements in a design mockup with
different colors as a means of identification .
or categorization.

Common terms used in level design

https://unity.com/
https://www.pluralsight.com/blog/film-games/character-controls-camera-3cs-game-development

6 of 112 | unity.com© 2023 Unity Technologies

Ultimate Chicken Horse by Clever Endeavour Games is a party platformer in which you and your friends build out the level and try to make it to the end.

Critical path This is the longest path the player can take to
complete the game.

First playable The first playable is a version of a game that
provides functional major gameplay elements (and
assets). It’s often based on the prototype created
in preproduction (Source: Wikipedia).

FOV In first-person video games, the field of view/
vision (FOV) is the extent of the observable game
world that is seen on the display at any given
moment (Source: Wikipedia).

Goal Goals are the challenges and activities a player
has to complete to win and/or conclude a game.
Placing goals throughout a game provides the
player with a sense of accomplishment and
motivates them to continue.

Golden path Typically, this is the path that offers the best
gameplay elements, story, rewards, and/or secrets
(Source: tv tropes).

Interactable An object that the player is able to interact with.

https://unity.com/
https://en.wikipedia.org/wiki/Video_game_development#:~:text=The%20first%20playable%20is%20the,prototype%20created%20in%20pre%2Dproduction.
https://en.wikipedia.org/wiki/Field_of_view_in_video_games#:~:text=In%20first%20person%20video%20games,display%20at%20any%20given%20moment.
https://tvtropes.org/pmwiki/pmwiki.php/Main/GoldenPath#:~:text=The%20Golden%20Path%20is%20the,is%20not%20always%20the%20case

7 of 112 | unity.com© 2023 Unity Technologies

Level design terms Description

Line of sight Line of sight (sometimes abbreviated to LoS), is
the visibility (who can see what) on the playing
field in war and role-playing games (RPGs).

Mesh A collection of vertices, edges, and faces that act
as the foundation of a model in a video game.

Minimap A minimap is a small reference map that is typically
placed in the corner of the screen and used to
help the players navigate the game level (Source:
Sharp Coder blog).

Modding Modding in video games is the process of players/
fans altering one or more aspects of a game, such
as visual elements, characters, or behavior.

Pathfinding Pathfinding is a technique that’s used for AI to
navigate through environments, usually by using a
navigation mesh, or navmesh.

Playtest A playtest involves playing through each new build
of a game in order to find bugs, ensure gameplay
flow, and explore opportunities for improvement.

Prototype In game development, a prototype is a pared-
down example “slice” or scene of a game created
to test foundational gameplay ideas and show as a
proof of concept to investors and other
stakeholders.

Readability The quality of being legible or decipherable.

Top-down The top-down perspective (or bird’s-eye or
helicopter view) in video games is the perspective
of the player looking down on a level from above.
The top-down view can also be used to describe a
2D visualization of a level that is viewed from
above.

Vantage point A position or standpoint from which something is
viewed or considered (Source: Merriam-Webster)

Wireframe A wireframe model is a visual representation of a
3D physical object used in 3D computer graphics
(Source: Wikipedia).

White-boxing .
(or grey-boxing)

A whitebox is a level created with simple 3D
shapes that is used to test layouts and pathing.

You can find more nomenclature for games from the glossary in Unity
documentation.

https://unity.com/
https://sharpcoderblog.com/blog/unity-3d-minimap-tutorial#:~:text=Minimap%20is%20a%20miniature%20map,in%20Unity%2C%20using%20UI%20canvas.
https://www.merriam-webster.com/dictionary/vantage%20point
https://en.wikipedia.org/wiki/Wire-frame_model#:~:text=A%20wire%2Dframe%20model%2C%20also,used%20in%203D%20computer%20graphics
https://docs.unity3d.com/2022.2/Documentation/Manual/Glossary.html

8 of 112 | unity.com© 2023 Unity Technologies

Preproduction

This section covers some of the key topics and tasks in the preproduction stage
of game development, such as design philosophies, metrics, paper designs, and
mapping out game mechanics. When approached thoughtfully, these processes
can help you sharpen your vision for the game and move into production
efficiently.

Coherent design

Coherent level design results from developing a holistic understanding of the
game world you’re building – its theme, style, time period, and so on. Research
for these elements, including working with colleagues to flesh out the game’s
theme and backstory as well as its key metrics and game mechanics, will go a
long way to providing players with an immersive, richly detailed world.

In writing, coherence is created by ensuring each sentence and paragraph
connects to the next in a logical, smooth sequence. Similarly, coherent design in
game development aims to be systematic and consistent in its delivery, with
each element of the game’s design interlinked logically, contributing to a holistic
experience.

Death’s Door by Acid Nerve showcases great execution of interconnected level design. You can watch the Unity Creator Spotlight interview with the team here.

https://unity.com/
https://www.youtube.com/watch?v=pcSmBGkbd-g

9 of 112 | unity.com© 2023 Unity Technologies

Death’s Door and Cuphead are examples of games with strong, well-executed,
coherent game design. The developers say that the level design in Death’s Door
was inspired by the Dark Souls series.

“One of the things about Dark Souls that blew us away when we first played it
was the three-dimensional space they use for levels,” explains Mark Foster (lead
programmer, codesigner, animator, and writer). “Everything’s stacked on top of
each other, so it’s really cool when you find a shortcut.”

The interconnectedness of the levels helps immerse the player in a game world
that feels like a real space, one that also provides moments of delight, such as
when the player realizes that the levels are laid out in nonlinear, organic fashion.

And in Cuphead, all the components work together to create a cohesive
experience, from the visuals to game mechanics and sound.

Research and references guide

Gather your research and references in a document or guide to help build your
understanding of the game world and the levels that you are creating. An
organized, regularly updated reference guide will help the entire development
team stay aligned on the execution of the game’s look and feel.

Cuphead by Studio MDHR, is inspired heavily by cartoons from the 1930s.

https://unity.com/
https://blog.unity.com/games/crafting-intricate-environments-deaths-door?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://unity.com/madewith/cuphead?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://blog.unity.com/games/crafting-intricate-environments-deaths-door?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

10 of 112 | unity.com© 2023 Unity Technologies

Pureref, Figma, and Pinterest are just a few apps available for collating and
sharing reference images. Apps and websites that can provide references for
your level design ideas include:

	— VGmap: An archive of classic, mostly 2D, game maps

	— Noclip: An archive of classic level maps in 3D

	— Geographic information system (GIS): This is a type of database
containing geographic data, combined with software tools for managing,
analyzing, and visualizing those data. Use GIS data as a basis for your
terrain and height map, referencing the real world and its natural
distribution, and then build upon it. There are a number of tools available
for using GIS data in Unity, such as Terraworld Automated Level Designer
from the Unity Asset Store.

Additionally, look to other games for inspiration and reference. Sometimes an
idea can be more attractive and understandable when using a functional
reference that people can play or watch.

Know your audience

Knowing your audience is important to planning out your levels. Are you targeting
a hardcore gaming audience? A specific age group or playing style?

Typically, the target audience is set by the creative director, production, and
marketing. Check with colleagues in these teams to align yourself with their
perspective on the intended audience for the game.

Terraworld Automated Level Designer by GISTech is a Unity plug-in that uses real-world references to generate terrain.

https://unity.com/
https://www.pureref.com/
https://www.figma.com/
https://www.pinterest.com/
https://vgmaps.com/
https://noclip.website/
https://assetstore.unity.com/packages/tools/terrain/terraworld-2021-automated-level-designer-156561

11 of 112 | unity.com© 2023 Unity Technologies

It helps to know Bartle’s taxonomy, a classification of video game players according
to their preferred actions within the game. This is based on character theory, which
identifies four characters: Achievers, Explorers, Socializers, and Killers.

A level designer can build the world with these character archetypes in mind.

Is your game a team-based competitive multiplayer game? Then your character
archetypes might be Killers and Socialites, since these games typically have a
heavy focus on peer-to-peer competition and teamwork.

If your game is a single-player open world adventure, your character archetypes
might be Explorers and Achievers since the player can explore the open world
while completing goals.

A game does not need to focus solely on one character archetype; there are
ways to include all archetypes in most games. Your single-player game, for
example, can include a Socialite archetype by adding a way to interact with
others outside of the game by trading gifts or visiting a player’s base. A
multiplayer shooter, while mainly focusing on the Killer archetype, can also be
attractive to Achievers.

Ultimately, you should aim to keep close to the game vision and satisfy the main,
or most important, character archetype(s) and avoid watering down the
gameplay to suit too many player types.

Bartle’s taxonomy is a classification of video game players based on a 1996 paper by Richard Bartle. Image source is here.

WorldPlayers

Killers

Defined by:.
A focus on winning,
rank, and direct
peer-to-peer
competition.

Engaged by:.
Leaderboards, .
Ranks

Achievers

Defined by:.
A focus on attaining
status and achieving
preset goals quickly
and/or completely.

Engaged by:.
Achievements

Socialites

Defined by:.
A focus on
socializing and .
a drive to develop a
network .
of friends and
contacts.

Engaged by:.
Newsfeeds, .
Friends Lists, Chat

Explorers

Defined by:.
A focus on exploring .
and a drive to discover .
the unknown.

Engaged by:.
Obfuscated .
Achievements

Interacting

Acting

https://unity.com/
https://en.wikipedia.org/wiki/Bartle_taxonomy_of_player_types
https://sites.google.com/view/togetherlearning/learn/gbt/bartle?pli=1

12 of 112 | unity.com© 2023 Unity Technologies

The 3Cs: Camera, character, and control

Typically, a level designer will tweak and fine-tune the camera, character, and
control components of a game while creating a test “gym” to facilitate the game
designer’s work. This process can help a level designer gain an understanding
for how the 3Cs are being set up in the game, ultimately helping to set the stage
for the key metrics.

As you will be hands-on with teaching and showcasing these moves to the
player, look to offer feedback to the game designers to improve the experience.

Camera

The camera helps to drive your metrics and provides the perspective the player
will use to play the game.

A few examples of how a level designer can consider the camera during
production include:

	— Using the camera height to avoid clipping when the player crosses through
doors

	— Using the field of view (FOV) and camera to illustrate the player’s
perspective and how the scenes will be framed in the game

	— Weighing the pros and cons of different perspectives: A first-person
perspective has the player facing one direction, which limits their ability to
spot enemies sneaking up from behind; in comparison, in an isometric
game, the player typically sees all around them

Character

The character element is important to a level designer because it refers to the
character’s weapons, abilities, and other unique traits. Ultimately, this is your
toolkit for how the player will navigate and engage with your levels.

The camera position and FOV gives a sense of scale of characters and environments. In VR this is even more important as you immerse yourself in the environment. Learn more about VR
with the tutorial VR Beginner: The Escape Room.

https://unity.com/
https://learn.unity.com/project/vr-beginner-the-escape-room

13 of 112 | unity.com© 2023 Unity Technologies

Take note of any changes to the character’s abilities and other traits throughout
development, as these can impact how the level is played.

A few examples of how a level designer can take the character into account
include considering:

	— The character’s abilities and how to teach and showcase these to the
player in a gradual manner

	— The strength of the character at any point in the game and whether
challenges at various stages are suited to their strength/power level

	— Character customization options for the player and the way they play, e.g.,
stealth, run and gun, hacking, and so on

	— The player’s double jump ability: How high and far can they jump, and are
you exploiting the ability well in your designs?

Control

Control determines how the player manipulates their character using the
peripheral of their choice. Whether it’s stealthily navigating through levels,
galloping through trees, racing a car, or bumping into one another like the
characters in Fall Guys, good controls significantly impact gameplay.

Play through your levels with the different target peripherals for your game.
Depending on your audience, you might want to reduce the repetition of actions in
a short sequence or widen corridors to compensate for the difference in controls.

Slime Rancher 2 by Monomi Park is fast-paced first-person adventure game. As with any FPS, responsive controls for turning, aiming, and moving are key parts of the gameplay experience.

https://unity.com/
https://www.slimerancher.com/press

14 of 112 | unity.com© 2023 Unity Technologies

For example, navigation with a mouse and keyboard allows for precise
movements and a larger range of motion than that of an analog stick unless the
values are clamped. The analog stick typically allows you to move between a
value of 0–100 at a fixed rate, which can result in slower turning speeds and
reaction times compared to the mouse and keyboard.

Learn more about the camera, character, and controls from Unity Learn and
documentation.

Metrics

Game metrics dictate the relations in playable space. It’s important to identify
and set them before you start production since they will drive the composition
of your level and spaces.

For instance, a fast-moving character may need more playable space when
compared to a slow one. In an ideal world, the level designer has most of the
metrics at hand before creating their level and then testing the metrics in a
“zoo,” essentially a playground to explore components of a game.

Another example is that of a game wherein a player can crouch and hide from
the enemy behind objects. Just for that simple mechanism, you’d need to know
the following metrics:

	— How tall is the player when crouched? (vertical height of the character
model)

	— How tall is the player capsule/hitbox when crouched (a space typically
larger than, or equal to, the character model that is used to determine
“hits” on the player)

Using these two metrics, you can determine the minimum height of an obstacle
in order for the player to hide from the enemy behind it and to block enemy
attacks from the opposite side of the obstacle.

Always be aware of changing metrics throughout the game development cycle.
In this example, if the metrics were to change after you have built out your
levels, all the cover obstacles would most likely need to be revised since they
will no longer respect the original rules of cover. Changes could result in
outcomes that are the opposite of those intended, such as the player being
seen/hit when they should be hidden.

Typically, 3D software and game engines like Unity are designed with a default
unit size that acts as the reference for other systems, such as physics, cameras,
or rendering, to simulate reality. A Unity unit equals one meter, and it’s this grid
size that’s visible in the Scene view. When you create a new primitive 3D object
like a cube, it takes one cubic meter of volume. It’s good practice to respect this
scale when creating environments and characters.

https://unity.com/
https://learn.unity.com/project/creative-core-cameras?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://docs.unity3d.com/2022.1/Documentation/Manual/character-control-section.html
https://docs.unity3d.com/2022.1/Documentation/Manual/Input.html

15 of 112 | unity.com© 2023 Unity Technologies

When you create 2D environments in Unity, it’s recommended to keep scale
relative to the real world, despite being more flexible. For example, if your 2D
game uses a tile system, you can use that reference instead, as long as the rest
of the game is designed around it.

See how to tweak the Unity game grid in the Getting started in Unity section
below.

Starter Assets is a Unity template on the Unity Asset Store that includes a character controller and camera setup. The test level includes a grid texture following Unity’s unit size reference.

Skul: The Hero Slayer is a pixel art rogue-lite game made in Unity that uses the 2D Tilemap Editor to build the world.

https://unity.com/
https://unity.com/solutions/2d?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://blog.unity.com/games/say-hello-to-the-new-starter-asset-packages?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://resources.unity.com/games/skul-the-hero-slayer-case-study?ungated=true

16 of 112 | unity.com© 2023 Unity Technologies

Paper design

2D game art, animation,
and lighting for artists

2D games are making their mark. .
The evolution of hardware, graphics, .
and game development software makes .
it possible to create 2D games with
real-time lights, high-resolution textures,
and an almost unlimited sprite count.

Get Unity’s most comprehensive .
2D development guide, created for
developers and artists who want to
make a commercial 2D game.

Download the e-book

A hand-drawn level for a 2D platform game.
Source: Peter Mcclory

https://unity.com/
https://resources.unity.com/games/2d-game-art-animation-lighting-for-artists-ebook?ungated=true%3Futm_source&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
http://petermcclory.com/2016/01/03/hand-drawn-2d-platform-game-level-design-process-tutorial/

17 of 112 | unity.com© 2023 Unity Technologies

Designing your levels on paper before putting them in Unity can be useful as
part of the research phase of creating a level.

A rough sketch or layout of a level can include the puzzles, enemy encounters,
and other gameplay elements that the player will encounter.

Designing on paper can allow you to foresee both potential problems and
benefits with your gameplay ideas and element placement. It’s especially useful
if there is no character controller or level editor available in the game engine for
blocking out and testing.

On the other hand, not all level designers use paper first. Some prefer to work
directly in their chosen game engine since it’s easier to visualize and move
around the space.

There are a number of sketching applications you can use, such as Diagrams.
net, Microsoft Visio, yED, or Gravit Designer.

A level blocked out with LEGO, by Hugues Barlet .
Source: https://www.gamedeveloper.com/design/block-design-in-level-design

Identify and understand the different game mechanics

The game design mechanics and gameplay that players use are an important
part of your toolkit. The more you learn and understand them, the more effective
they will be when you use them.

For instance, a jump mechanic can be broken down into several parts depending
on its implementation.

The simplest may be a stationary jump – without using other buttons, a player
can press the jump button to jump in the air. A more complicated maneuver can
be running at full speed, jumping to maximum height by holding the jump button,
and performing wall jumps.

Once you understand the intricacies involved in performing the jump mechanic,

https://unity.com/
https://app.diagrams.net/
https://app.diagrams.net/
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.yworks.com/products/yed
https://apps.microsoft.com/store/detail/gravit-designer/9N3VTCZ9M646?hl=da-dk&gl=dk&rtc=1
https://www.gamedeveloper.com/design/block-design-in-level-design

18 of 112 | unity.com© 2023 Unity Technologies

you can break down the end result and introduce players to each mechanic
gradually, starting with the easiest action to perform and then working in more
complex interactions as the player progresses.

Let’s use a wall jump as an example and break it down into the following segments:

	— Press button to jump, (simple jump upwards, gain Y height)

	— Hold button to jump, (higher jump upwards, gain Y height + extra height)

	— Run and jump, (gain Y height and X distance)

	— Run and hold jump, (gain Y height + extra height and X + distance)

	— Jump onto a wall and slide down

	— Jump onto a wall, slide down, and jump again to another wall, etc.

Each of these segments can be introduced to the player as they progress,
making the learning curve more manageable and hopefully helping players to
master each ability.

Indivisible is a game that makes good use of gradually introducing the player to
the game’s level-traversing mechanics, starting from a simple jump and
culminating with a combination of several mechanics. There is plenty of room for
a player to learn and master these skills while not being overwhelmed.

Test the game mechanics in a gym/zoo

A gym level made with intractable elements of the prototype and obstacles

https://unity.com/
https://store.steampowered.com/app/421170/Indivisible/

19 of 112 | unity.com© 2023 Unity Technologies

A gym, or zoo, is a simple game space created to test and refine mechanics that
will be used throughout the final version. Gyms are typically used only during
production by the production team.

What are some mechanics you can test in a gym?

	— Create doorways to test the camera height and space needed on either
side of the player

	— Add twists, turns, and winding paths to test player movement and control

	— Add slopes to test inclines, including multiple inclines to test granularity

	— Test unclimbable slopes to balance out passable and impassable terrain

	— Test triggers, jump distances, and much more

Ultimately, your goal is to identify which mechanics and gameplay elements
work and what you should cut.

If needed, you can create multiple gyms to test and isolate mechanics, for
example, to test terrain types, shooting galleries, battle mechanics, and so on.

Share your gyms with the development team. The QA team, for example, can
use the gym to test and isolate mechanics, game designers to tweak, improve,
and test their designs, and technical artists to test art assets (LODs, etc).

Unity provides a character controller to use as a stand-in to test mechanics. If
you replace Unity’s character controller with a new one, you should retest the
latter in the gym to make sure it works with the game’s metrics and
functionalities from the previous controller, and adjust as needed. See the
section on character controllers for more information.

Pacing and gameplay beats

Good pacing helps keep the player engaged. It’s supported by gameplay “beats,”
the major points and activities in the game that drive the player forward.

A level designer typically has control over the tempo throughout the game.
Creating a visual timeline can be useful for determining what kind of tempo you
want players to achieve as they progress, and at which points the player will hit
another gameplay beat.

Free up a player to explore a level or part of a game by removing any time limit
for that particular part. In contrast, if you need the player to have a sense of
urgency, impose a time limit to get them moving.

It might be worthwhile to give your players some respite in high-intensity games
by allowing them to wind down before playing intensely again. An example of
this is the “car crash” stage in Street Fighter II. After intense combat against AI
or other players, the player can beat up a car that doesn’t fight back, allowing
them to practice their moves and regain confidence.

https://unity.com/

20 of 112 | unity.com© 2023 Unity Technologies

Learn more about pacing in this video from Brackeys.

Sons of the Forest by Endnight Games (published by Newnight) is a popular survival game that includes crafting as one
of the main game mechanics, a task that offers a nice break in between tense fights.

Harold Halibut by Slow Bros, is a handmade narrative game about friendship that makes great use of Unity Cinemachine
and Timeline.

A living world: Environmental storytelling

A man in a dimly lit space stares at graffiti on the wall. In red it says WHERE’S
HOME? At first glance, it seems like it’s written in blood, but a red paint can attracts
his (and the player’s) eye. This scene invites the player to make sense of what
they’re seeing, while imagining what could mean. Simple environmental elements
like this graffiti and paint help to immerse players in the game’s story world.

Environmental storytelling is the concept of telling a story through level design
and environment assets. It explains what’s going on in the game with implicit,
rather than explicit, markers, clues, and so on.

https://unity.com/
https://www.youtube.com/watch?v=ftiHgyFt72M

21 of 112 | unity.com© 2023 Unity Technologies

Strong worldbuilding uses environmental storytelling to support the game
narrative, making the game world feel authentic and lived in to encourage player
immersion. Level designers can use lighting, themed assets, and carefully placed
props to reveal the story players as they move through the game.

Clarify your storytelling in a game by answering fundamental questions such as:

	— Why is this happening?: Are there elements you can include to hint at why
the player is at any given point? Think of quest progression/gameplay that
brings the player to a particular point or milestone, and use that to set the
tone or atmosphere of a scene or level.

	— What happened?: Is the scene portraying the tone and elements to lead
the player into understanding what happened?

	— Where did this happen?: Think of the location, its backstory, and what
elements should be included or focused upon to support where this is
happening.

	— When did this happen?: Consider the game world’s timeline and period.
Identifying when it happened helps the designer to place themselves in the
timeline and find elements to include to better tell the story.

	— How did this happen?: Was there an earthquake causing panic throughout
the city? Think of how you can show this to the player with background
elements, such as fallen pictures, cracks in buildings, and so on.

Answering these questions can help fill in the blanks when building out your
levels, making it easier to have a cohesive, comprehensive world built on a
logical backstory.

Production

After preproduction, you should now have the tools and information to start
blocking out and iterating on your levels. This section provides tips and best
practices for building out levels.

White-boxing: Blocking out your level

White-boxing (also called grey-boxing) is creating and arranging simple 3D shapes
to identify which layout best suits the level design and style you’re aiming for.

Keeping the white box simple allows you to easily manipulate the level without
having to adjust art, lighting, and other details, resulting in a faster iteration process.

Some level designers prefer to jump directly into white-boxing instead of creating
paper designs first, since they like to work in the 3D space and get used to the game
engine workflows. It’s up to you to determine which approach works best for you.

Part III of this guide provides step-by-step information on how to use Unity’s
ProBuilder to efficiently generate shapes and terrain. It provides ready-made modeling
tools and predefined elements common in game design. Alternatively, you can place
primitive 3D objects directly in the Scene view, a process that’s covered in Part II.

https://unity.com/
https://unity.com/features/probuilder?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

22 of 112 | unity.com© 2023 Unity Technologies

Give descriptive names to blocky assets

Give each blocky asset a descriptive name to identify its use. This helps the
environment artists to understand what your intention is for each object when
they need to replace them with the actual game assets.

For example, is a block a wall, and if so, is it necessary that it has a minimum
height to block the player’s view? A name for this asset could be “wall_interior_
w2_h4_l6.” This label identifies the object, its location, and measurements,
details that are important to pass on to artists. Consistent formatting of your
names will also make it easier for colleagues to understand their meaning.

Multiple weapons tdm AI VR shooter d18 – reddit posted by niv-vada example of a blocked-out level using ProBuilder.
Reddit thread

A blocked-out scene with assets labeled
with helpful names, such as “P_
GenericWall_200x300cm” – the P prefix
indicates that it’s a Prefab, followed by
what the asset is (a wall), and then its
measurements.

https://unity.com/
https://www.reddit.com/r/Unity3D/comments/ynla3j/multiple_weapons_tdm_ai_vr_shooter_d18/

23 of 112 | unity.com© 2023 Unity Technologies

For ease of access you can also choose to use floating text in the 3D space to
identify your intentions, allowing a colleague to run a build without Editor access
and see your plan.

Finally, labeling your assets is not only useful for others looking at your scene, it’s
also useful for you, since it will help you keep track of what you’re working on.

Add Materials to blocky assets to visualize your intention

In addition to giving assets descriptive names, you can also apply materials to
your blocks to clarify your intention. This is a handy way to differentiate
between interactive and static objects, playable and non-playable space,
breakables and non-breakables, and so on.

Avoid creating detailed art assets

“The 3D stage is when you need to start paying
people for your concepts and models… For us, it
was the most time-consuming part of constructing
levels and making them really detailed. You don’t
want to be doing that until you’re sure your level
is exactly how you want it to be.”

David Fenn, composer and sound designer, codesigner, producer, and level designer .
on Death’s Door

The point of white-boxing is to try out ideas and iterate on them. To avoid
spending time updating assets that are not finalized, your team should not
create 3D assets until the designs have been approved.

Once you have buy-in from other relevant team members and are satisfied with
your level design, the artists can start going through the level and add 3D
assets to replace the white boxes.

Ask a concept artist for help

Team members might have trouble visualizing the final result from a white-
boxed scene. A concept artist can help you concretize your vision by performing
a paintover on your whitebox. This is a 2D representation of the level, so there is
no requirement to create 3D assets. Typically, paintovers are done by taking a
screenshot of the level and then painting it to show the desired style and mood.

You can also share the actual scene with a concept artist. If you have
documented what each of the blocks represents, it will be easier for the concept
artist to adhere to your overall vision.

https://unity.com/
https://blog.unity.com/games/crafting-intricate-environments-deaths-door?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

24 of 112 | unity.com© 2023 Unity Technologies

As long as the concept artist respects your constraints and block outs, a
paintover can be a good way to get buy-in from your team.

Image source: How to graybox, blockout 3D video game from de_crown, by FMPONE and Volcano
– Blockout before paintover

Image source: How to graybox, blockout 3D video game from de_crown, by FMPONE and Volcano – paintover the
blockout

Ready-made assets can also help

Another efficient way to amplify your white-box scene is to drop ready-made
assets into it.

The Unity Asset Store has many ready-to-use assets to visualize your ideas. For
example, the POLYGON Prototype Pack from Synty Studios will help you
“communicate design decisions with your team using the included notes and
markers.” See Part III of this guide for detailed information on how to use
specific Unity Asset Store products in level design.

https://unity.com/
https://www.blog.radiator.debacle.us/2017/09/how-to-graybox-blockout-3d-video-game.html
https://www.blog.radiator.debacle.us/2017/09/how-to-graybox-blockout-3d-video-game.html
https://assetstore.unity.com/packages/3d/props/exterior/polygon-prototype-low-poly-3d-art-by-synty-137126?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

25 of 112 | unity.com© 2023 Unity Technologies

POLYGON Prototype Pack by Synty Studios, available on the Unity Asset Store

Hollow Knight, by Team Cherry, is a popular 2D game made with Unity. The critical path for the game would be the path
needed to complete the 112% of the game, which is the entirety of the map.

Player pathing

Player pathing describes the paths a player uses to complete their goals. There
are four categories of paths in game development: critical, golden, secondary,
and tertiary.

Critical path

The critical path is the longest path available for completing a game. Think of it
as the path you’d need to take in order to test all the content you aim to ship
most efficiently.

https://unity.com/

26 of 112 | unity.com© 2023 Unity Technologies

Golden path

The golden path offers the best gameplay elements, rewards and/ or secrets.
Some games, such as TUNIC, by TUNIC Team, offer multiple endings, with the
path required to get the best ending considered the golden one.

TUNIC, by TUNIC Team, is an isometric action adventure game that offers multiple endings.

Since the golden path is intended to be the most attractive and fun path for the
player, make sure to test it with colleagues to identify points of frustration and
confusion, as well as those parts that help the content shine.

Typically, the golden path encompasses most, if not all, systems of play, so the
player experiences all the game has to offer. However, it doesn’t include all
components of the game. A game with multiple endings, for example, would require
playing through each ending for the critical path, whereas the golden path would
only be the most compelling, interesting, or fun pathway to get to one ending.

Secondary and tertiary paths: Side quests, secrets, and shortcuts

How many paths do you need? Ideally, you want to offer paths for each of the
play styles in your game. For example the game Deus Ex: Human Revolution, by
Eidos Montreal caters to several play styles such as, run-and-gun, stealth, and
hacking. Identify desired play styles so designers can build levels with them in
mind. Additionally, offer multiple paths to solve a problem that rely on each style
or a combination.

Making a player backtrack through an area they have already explored with
little to no reward can be frustrating. A better player experience is to ensure
they can quickly get back into the action when they reach the end of a
shortcut or side quest.

Additionally, adding content, even something small, to the end of paths and
open-ended spaces is a way to reward the player for exploring and encourage
them to do it throughout the game.

https://unity.com/

27 of 112 | unity.com© 2023 Unity Technologies

The rule of three for teaching mechanics to players

Give your players time to learn a new mechanic or system by having it repeat
multiple times within a play session. The general rule is that the player should
perform a new action or series of actions at least three times before they’re familiar
with it. Space out new systems and mechanics to avoid overloading players.

Let’s look at an example of the rule of three for introducing new mechanics in a
typical platformer:

1.	 A player encounters a single enemy for the first time and learns that they
can defeat it by jumping on it.

2.	 Following that first instance, the player then encounters several enemies
that require the player to jump on each of them once to defeat them. This
further cements the action of jumping on the enemy’s head to defeat them.

3.	 In the third sequence, the player encounters a group of enemies spaced
apart. The player can jump on each enemy’s head to defeat them, but this
time it requires more dexterity.

After these three instances, the player should know they can defeat both single
and multiple enemies by jumping on them once.

Partition a new mechanic or system into easily learnable chunks, as explained in
the section “Identify and understand the different game mechanics.”

Pillars of Eternity, by Obsidian Entertainment, presents an enchanted world where the choices you make, including which
paths to follow, shape your destiny. The image above depicts a choice of side quests in addition to the main one.

https://unity.com/

28 of 112 | unity.com© 2023 Unity Technologies

Subverting expectations

Now that you’ve instilled a pattern in your player’s mind, it’s time to subvert it!
Unexpected challenges based on new mechanics or the expansion of existing
ones can increase the fun factor and keep players engaged.

In the previous example, the player learned that jumping on enemies once
defeats them.

Now, the player encounters an enemy with a helmet. Instinctively, they jump on the
enemy, expecting to vanquish it, but only the helmet is destroyed while the enemy
survives. The player jumps on the enemy, now without a helmet, and learns that this
second jump will defeat it. Their expectations are subverted but without frustration
– the player can still rely on the familiar pattern of jumping on an enemy.

Overcooked 2, by Team17, introduces the gameplay progressively, starting with simple actions and moving to more
elaborate recipes.

Marvel SNAP! by Second Dinner introduces players to cards, each with abilities that can create thrilling twists and turns
throughout the game. Watch how the team created this mobile hit in Unity, as outlined in their GDC23 session.

https://unity.com/
https://www.youtube.com/watch?v=F73nMLkcDQE

29 of 112 | unity.com© 2023 Unity Technologies

Line of sight and blind spots

The line of sight, also known as the visual axis or sightline, is an imaginary line
between an observer's eyes and a subject of interest or their relative direction.

The line of sight is often used in video games to detect enemies, the player, or
to cull objects outside of the player’s line of sight. It can be identified by a cone
shape consisting of an array of lines starting out from an origin point.

For example, in FPS games, level designers pay attention to lines of sight and
blind spots. Understanding where the player can see and be seen throughout a
level is important to crafting challenges for them, such as where firefights will
occur and whether or not there’s sufficient cover to handle some situation.
Alternatively, you can use areas of high visibility to force the player to find a
safer route.

Contrasting the line of sight are blind spots, areas that are not immediately
visible to the player or AI. Use blind spots to spawn enemies outside of the
player’s vision, place secrets, and create intense stealth moments.

You can create lines of sight and similar systems with raycasts and physics in
Unity, which are explained in Part II.

Get the player’s attention

In many games, you’ll want to direct and encourage the player to explore some
spaces while encouraging them to avoid others. Let’s look at techniques you can
use to direct a player’s attention and movement.

Image: Enemy Vision 2 – Noise detection, two levels cones, code restructuring by Indie Marc

https://unity.com/
https://en.wikipedia.org/wiki/Line_of_sight
https://www.youtube.com/watch?v=zzEvp1ygQWY

30 of 112 | unity.com© 2023 Unity Technologies

Lighting and space

The lighting of a playable space goes a long way in directing a player’s
movement and creating the atmosphere of a scene.

Use lighting to emphasize a particular path, like a light at the end of the tunnel,
to drive the player towards it. Lack of light is also effective: A dimly lit or dark
space can stoke fear in the player, keeping them away from lurking enemies.

Physical blockers

Physical blockers are collisions that block the player’s movement. Use physical
blockers to help direct the player and keep them in the playable space. Mark or
indicate a blocker clearly, for example, by adding a visual cue to invisible
collisions that set the boundaries of the playable space.

In INSIDE, the indie adventure game by Playdead, lights are used throughout to draw the player’s attention to paths and points of interest on the screen.

https://unity.com/

31 of 112 | unity.com© 2023 Unity Technologies

Some ways you can use to limit your player to a playable space include:

	— A suspended playable space encircled or enclosed by an “instant death”
floor that kills the player if they come in contact with it

	— A limit on resources available to a player that prevents them from exploring
a space too far from an anchored point

	— An invisible boundary that, when transgressed, triggers a notification or
message to tell the player they have a limited time beyond the boundary
before they are killed or returned (typically used in battle royal games)

Of course, there are many ways to contain your players within the playable
space, so explore and exploit the systems that fit best with your game.

Signposting

Signposting refers to clues, signs, or other content that helps the player
understand, navigate, and progress through each level. Signposting keeps a
player informed about where to go and provides clues and directions to fall back
on if they get lost.

Just as the real world is full of signposting, from maps and traffic signals and
signs, to the “push” or “pull” placards on a door, a game should provide ample
clues and messages to help players understand the world they’re in. Use both
subtle signposting or something as obvious as a landmark that’s easily seen and
recognized from a distance.

Colors can be used for signposting when their meaning is easily recognized by a
global audience, e.g., red for stop/danger, green for go, and so on. Many players
will know that a bright red barrel can indicate danger, such as an imminent
explosion.

Praey for the Gods, by No Matter Studios, is a boss-climbing, open world adventure game where you play a lone hero
sent to the edge of a dying frozen land to explore and solve the secrets of a never-ending winter. Throughout the game,
physical blockers and signposts direct the player forward as they spawn into the world.

https://unity.com/
https://unity.com/madewith/praey-for-the-gods

32 of 112 | unity.com© 2023 Unity Technologies

Sound

Sound is another great way to get the player’s attention. Whether it’s gunshots
in the distance, a voice calling the player forward, or a grinding, fear-inducing
noise in the dark, sound enriches the player experience and helps enforce game
mechanics and actions.

The game Subnautica does a great job of using sound to help the player
understand their status. For example, when the player is low on oxygen, the
music gets more intense and murky, and bubbles are both seen and heard
escaping from the player’s mouth before all fades to black.

Employ both audio and visual clues to accommodate deaf or hearing-impaired
players. In Subnautica, visual clues, such as UI text messages, accompany the
audio clues to indicate player status.

Spawn points

Spawning the player into your world sets the tone of the experience and
can help guide them in the intended direction. It’s good practice to spawn
the player facing in the direction you want them to go, so there’s no need
for them to turn or be sent back down a path they’ve already traveled.

Use the spawn moment to pan the camera to important elements. This
signals elements’ significance before giving control back to the player.

Save points and checkpoints

Save points and checkpoints, typically placed by a level designer, help
keep your players engaged in the action. Saving a player’s progress
encourages them to try things out without fear of having to start all over.

In Subnautica, by Unknown Worlds Entertainment, players survive by building habitats, crafting tools, and diving deeper
into the underwater world. In this image, the player is about to run out of oxygen, as indicated by the health stats, UI
text, and sound effects.

https://unity.com/
https://unknownworlds.com/subnautica/

33 of 112 | unity.com© 2023 Unity Technologies

Save points

In some games, a save point may be static, requiring the player to find it
manually to save their game. Static spawn points let the designer control what is
saved when and where, and these are useful in situations where saving the
game in any given place is too complex for the system.

In other games, players can save nearly anywhere in the gameplay or with some
limited restrictions. Typically, this requires more effort and strong game code, as
reloading a save anywhere after completing any given action can be complicated.

Many games use a mix of both types of save points. For instance, a game could allow
you to save anywhere, but all the enemies are reset and you spawn in a static location
set by the designer, instead of where you saved the game. This bridged approach
can work well in complex games, allowing players to save at any time while keeping
the save system simple enough to minimize potential bugs and issues.

Checkpoints

Checkpoints are placed throughout a level, saved in memory temporarily, and
only accessible while the player progresses through a mission or level.

This technique allows a designer to set temporary saves throughout a long
mission, breaking it down into smaller sections and making it easier for a player
to progress. Checkpoints are also useful when there are several challenges in a
sequence, or the mission is too complicated to reload at any desired point.

Avoid soft-locking

Make sure to test all your checkpoints in the game to avoid soft-locking the
player. A soft-lock occurs when the player can no longer progress or backtrack
through the game, oftentimes forcing them to load a previous save or restart the
playthrough entirely.

In Hollow Knight by Team Cherry, the save points, and the bench, are part of the world and storytelling.

https://unity.com/

34 of 112 | unity.com© 2023 Unity Technologies

A few examples of a soft-lock include:

	— When a player is reloaded into a collision and unable to escape

	— Triggering a checkpoint at a point in the game where the player is
unequipped to progress further, but at the same time, can’t backtrack

	— Reloading a save and unavoidably dying

Games with multiple autosave slots allow the player to manually save at different
spots in the gameplay, giving them the chance to roll back their progress and
prevent soft-locking.

Broforce by Free Lives is a side-scrolling run-and-gun platformer that smartly uses save points and checkpoints to
segment the gameplay while keeping the players in the action.

Mindful placement of save points and checkpoints

Be aware of where you place save points and checkpoints throughout the game
to avoid frustrating the player. For example, avoid placing a save point for a
difficult mission before a long, unskippable cutscene; if every time the player
fails the level they’re forced to watch the cutscene, chances are they’ll get
frustrated quickly. Try placing a save point or checkpoint after long cutscenes to
allow the player to get right back into the action. Alternatively, allow the player
to skip a cutscene.

This also applies to gameplay sections with tough sequential challenges. For
instance, if a player completes a difficult platforming section and then faces a
major boss fight, it might serve the gameplay better to separate these
challenges by placing a save point or checkpoint between them.

Procedural level design

Procedural generation is a power tool that facilitates the creation of large
amounts of content in games. You can use procedural generation to save on
development time, have a smaller project size, or generate random layouts for
less predictable gameplay.

https://unity.com/
https://www.broforcegame.com/

35 of 112 | unity.com© 2023 Unity Technologies

There are several ways to incorporate procedural generation into game
development, and the technology is rapidly growing and changing. Look into
which type of procedural generation best fits the type of project that you are
creating. For examples of the method in Unity, see this blog post on procedural
patterns with tilemaps.

Procedural generation produces results based on algorithms and the provided
content. The content is typically created by the development team, but it can
also be user-generated via level creation tools available to the player or
community. GIS data can also be used for procedural content, allowing a creator
to source data from real-world geography and import it into a game as a
playable level.

Procedural generation rules

Although procedural generation is great for adding randomness in your levels, it
can also result in confusing and frustrating layouts. It works best with rules for
players that are easy to understand and employ. Good guidelines will help the
player drive a desired result while still keeping the randomness. But in order to
make impactful changes, you need to understand the relationship between your
procedurally generated elements.

It can help to build your procedurally generated content around unique or
recognizable structures that can serve as a guide for the player as they explore
the generated content. These types of landmarks act as visual navigation tools
and can help break up monotony generated by the system.

In Timberborn, by Mechanistry, the procedurally generated terrain offers players a puzzle and a playground, like this
"starting village", to build their cities on.

https://unity.com/
https://blog.unity.com/engine-platform/procedural-patterns-you-can-use-with-tilemaps-part-1

36 of 112 | unity.com© 2023 Unity Technologies

Automated testing

Since procedural generation tends to offer a significant amount of results, it’s
worthwhile to create automated tests in order to save time and effort.

Set up your automated tests to run the procedural level generation through
several hundred iterations. This is to test whether the rules you have used are
working as intended or if they need to be changed. Since the computer will be
running the tests without user input, it should be much quicker to generate
many iterations of your level in a short amount of time. Once you have the data
at hand you can make any necessary adjustments to your rules.

Test, test, and test again

It’s critical to test your content (that’s why it’s mentioned multiple times
throughout this guide).

How do your levels play? What, and where, are the strong and weak points of
your design, and how can you exploit and improve upon them? Playing through
your content (as well as getting your team to do the same) will help you identify
usability issues, bugs, and soft-locks before they get to the QA group.

While designing your content, think of what tools could make testing it more
efficient. Do you need to know how far your character is from other players? It
may be worth creating a script to display the distance. Do you want to know
where the player is failing the most often in a map? Track where the player fails
and create a heat map.

If you need help testing specific aspects of the game or need feedback on
levels, the testing team is a great source of information. They will also be in a
good position to let you know what kind of testing they do and what kinds of
tools could make their job more efficient.

Valheim, by Iron Gate studio, is a game with worlds that are procedurally generated. The levels are always the same size, with the player starting in the center.

https://unity.com/

37 of 112 | unity.com© 2023 Unity Technologies

P A R T I I :
I N T R O D U C T I O N
T O U N I T Y F O R
L E V E L D E S I G N E R S

Level designers are not always expected to have experience with Unity.
However, due to their training and experience, they should have the logical skills
needed to help them get a head start in the software.

This section provides an introduction to working in Unity, including installing Unity,
understanding the Editor interface, understanding the foundational elements for
any scene you build in Unity, organizing your assets and projects, and more. It’s
recommended that you read this section before the third and final section that
covers level design-specific toolsets from Unity and the Unity Asset Store.

The most comprehensive learning materials for beginner users of Unity are
available from Unity Learn. The Pathway courses created by Unity experts are the
best resources to start with. We also recommend the Create with Code series,
Ruby’s Adventure for 2D beginners and John Lemon’s Haunted Jaunt for 3D
beginners. For shorter tutorials, try the Creator Kit projects for an RPG, Puzzle or
FPS game, all of which are designed to be completed within an hour or two.

Install Unity

There are two versions of Unity available to download: Long Term Support (LTS)
or Tech Stream. The LTS edition is the default release that rolls up the features
and improvements made across the year into a single installation that provides
maximum stability. The Tech Stream provides early access to new features and
is primarily recommended for the preproduction, discovery, and prototyping
phases of development. You can read more about Unity releases here.

https://unity.com/
https://learn.unity.com/
https://learn.unity.com/pathways
https://learn.unity.com/course/create-with-code
https://learn.unity.com/project/ruby-s-2d-rpg
https://learn.unity.com/project/john-lemon-s-haunted-jaunt-3d-beginner
https://learn.unity.com/project/creator-kit-rpg
https://learn.unity.com/project/creator-kit-puzzle
https://learn.unity.com/project/creator-kit-fps
https://unity.com/releases/lts-vs-tech-stream?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

38 of 112 | unity.com© 2023 Unity Technologies

You can manage your Unity installations, projects, and modules in the Unity Hub.

It’s recommended that you install the latest Unity LTS release, which you can do
using the Unity Hub launcher, available from on the download website.

The Projects page in the Unity Hub

In the Unity Hub, the Projects page displays your Unity projects. Use the Projects
page to create a new project, manage your existing projects, or open a project in
the Unity Editor.

By selecting New project, you’ll see several options that might change based on
the version of Unity you have installed. If you install Unity 2022 LTS, the following
empty templates appear in the list:

	— 2D: Configured for 2D game development that uses an older version of
Unity’s Built-in Render Pipeline and comes with 2D packages preloaded

	— 3D: Configured for a 3D project with the Built-in Render Pipeline

https://unity.com/
https://unity.com/download?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://docs.unity3d.com/Manual/built-in-render-pipeline.html

39 of 112 | unity.com© 2023 Unity Technologies

	— 2D (URP): A newer 2D template that uses the Universal Render Pipeline (URP),
which enables updated 2D graphic features such as 2D lights and shadows

	— 3D (URP): 3D template that uses URP and comes preconfigured to support
performance, wide platform support, and graphics customization

	— 3D (HDRP): Includes settings to support projects that target high-end
platforms and require features available in the High Definition Render
Pipeline (HDRP)

Additional target platform-specific templates, such as for 3D mobile games, are
also available in the Hub.

An empty project can be daunting if you’re not familiar with the many features that Unity offers, but fear not: You can
quickly start creating your own assets or bringing in ready-made ones from the Unity Asset Store.

The Unity Editor

You can rearrange, resize, hide, or unhide windows in the Unity Editor to
accommodate your specific needs. You can save your customized layouts to
quickly switch back and forth between them.

In the image below, you can see the default views in the Editor:

1.	 Hierarchy window: Displays every GameObject in a Scene, such as
models, Cameras, or Prefabs

2.	 Project window: Shows all the assets in a project, such as scripts, 3D
models, Prefabs, or textures

3.	 Inspector window: Displays configurable properties of an asset or
GameObject and the scripts related to it

4.	 Scene view: Shows the scene in development

5.	 Game view Play, Pause, and Step buttons: Available via the Toolbar, these
buttons activate the Game view, which shows the game running in the
Editor and allows you to play, test, and iterate on it.

https://unity.com/
https://docs.unity3d.com/Manual/ScriptableRenderPipeline.html
https://unity.com/srp/High-Definition-Render-Pipeline?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://unity.com/srp/High-Definition-Render-Pipeline?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://docs.unity3d.com/2022.2/Documentation/Manual/CustomizingYourWorkspace.html
https://docs.unity3d.com/2022.2/Documentation/Manual/Hierarchy.html
https://docs.unity3d.com/2022.2/Documentation/Manual/ProjectView.html
https://docs.unity3d.com/2022.2/Documentation/Manual/UsingTheInspector.html
https://docs.unity3d.com/2022.2/Documentation/Manual/UsingTheSceneView.html
https://docs.unity3d.com/2022.2/Documentation/Manual/GameView.html
https://docs.unity3d.com/2022.2/Documentation/Manual/Toolbar.html

40 of 112 | unity.com© 2023 Unity Technologies

Please see the Unity Interface section in the documentation for a detailed
explanation of the layout and functionality of each Editor window and view.

The Editor with the Hierarchy, Inspector, and Project windows, and Scene view

Different assets in the Project view and their settings in the Inspector window

The Hierarchy view: In this example, GameObjects that are reusable Prefabs are denoted with a blue icon. The order of
the list of GameObjects in the Hierarchy view does not have any impact on the project – an exception is when you work
with GameObjects inside a Unity UI canvas.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/UsingTheEditor.html

41 of 112 | unity.com© 2023 Unity Technologies

Package Manager

Many features in Unity aren’t preloaded with a new project, but are instead
available as modular packages in the Package Manager via Window > Package
Manager in the Editor. In the Package Manager, you can see which versions of
each package are available, and install, remove, disable, or update packages for
each project.

The Unity Registry in the Package Manager

In the dropdown list at the top of the Package Manager window, you’ll find the
Unity Registry, the default menu that lists all official Unity packages available.
Packages already installed in a project are listed under In Project. Unity Asset
Store purchases are listed under My Assets, and preinstalled features and
packages are listed under Built-in.

Read about all the packages available in Unity 2022 LTS here.

GameObjects

Every object in a Unity scene starts out as a GameObject, such as characters,
collectible items, lights, cameras, and special effects. On its own, a GameObject
is an empty container. Before it can become and do something in a game, you
need to assign it functionality by attaching components to it. Components, in
turn, provide a set of editable properties for implementing their functionality.

A GameObject always has a Transform component attached (to represent
position, scale and orientation in the 3D space) that cannot be removed.

Add components via the Add Component menu in the Editor. From the
dropdown list, select from predefined components or define your own
component functionality with scripts.

Two different types of GameObjects: a 3D model and a direction light; note how the Transform component and gizmos
are the same for both but the rest of the components differ.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/upm-ui.html
https://docs.unity3d.com/2022.2/Documentation/Manual/pack-safe.html
https://docs.unity3d.com/2022.2/Documentation/Manual/GameObjects.html
https://docs.unity3d.com/2022.2/Documentation/Manual/UsingComponents.html
https://docs.unity3d.com/2022.2/Documentation/Manual/class-Transform.html

42 of 112 | unity.com© 2023 Unity Technologies

Manipulating GameObjects in the Scene view

Unity provides a visual grid in the Scene view to help you align GameObjects by
snapping (moving) them to the grid.

Navigating a scene and manipulating objects will be a big part of the work for
level designers using Unity. Consider getting familiar with the shortcuts for the
transform tools and customizing them if needed. Additionally, the panel overlays
on the Scene view showing the tools are also configurable through the Overlays
menu (check the shortcuts menu for the key to access it in your OS).

Default overlay panels in the Scene view

The options available in the Tools panel can vary depending on the selected
object, but the table below shows the core tools and default shortcuts
frequently used.

Tool Description Windows Mac

Pan the camera in the Scene
view

Q or shift Q or shift

Zoom in and out using mouse
scrolling or shortcuts

Alt + right click Option + right click

Orbit the camera around the
center of the scene view

Alt + left click Option + left click

Select items and move them W W

Change the rotation angle of
objects

E E

Scale selected objects R R

Transform the scale using the
boundary box of the object
(also known as the Rect tool)

T T

https://unity.com/
https://docs.unity3d.com/Manual/GridSnapping.html
https://docs.unity3d.com/2022.2/Documentation/Manual/ShortcutsManager.html
https://docs.unity3d.com/2022.2/Documentation/Manual/overlays.html
https://docs.unity3d.com/2022.2/Documentation/Manual/overlays.html
https://docs.unity3d.com/2022.2/Documentation/Manual/PositioningGameObjects.html

43 of 112 | unity.com© 2023 Unity Technologies

Transform the object’s position,
rotation, or scale using the
gizmo as shown on the image
(4)

Y Y

This tool appears when a
Collider component is attached
to a GameObject. It allows you
to manipulate the hitbox or
collider boundaries of the
object.

- -

The grid and snap tools help align GameObjects by snapping (moving) them to
the nearest grid location.

Tool Description

Toggle the grid on and off, change the grid axis and opacity,
align grid plane to the selected object (To handle) or the
position 0 of the respective axis in the scene (To origin).

Toggle grid snapping on or off, and the droplist allows you to
set up the intervals at which you can move the object (by
default, 1 unit on all axes, but you can customize it per axis).
You can also align the selected GameObject to the grid on all
axis or selected ones.

Incremental snapping offers settings for the snapping when
you move, rotate, or scale a GameObject via Control on
Windows or Command on Mac; in the drop list, you can set up
the intervals for it.

Vertex
snapping

By default, every time you manipulate a GameObject it does it
from the center of the object or the pivot point (check the
handle position toggle), but if you want to do it from a vertex
of the mesh, hold the key V and move the mouse to select
vertex. This is particularly useful to, for example, manipulate a
wall from one of its corners and align it neatly with other build
structures. Find more details about positioning GameObjects
in the docs. A tip that lever designers shared with us is to try
and set the pivot of a 3D model in DCC tools in the 0,0,0
position, so you can always expect to be able to drag it from
the bottom corner when the handle mode is set to pivot point.

The Orientation Gizmo has a conical arm on each side of the cube. The arms at the
forefront are labeled X, Y, and Z. This displays the current orientation of the Scene
view Camera and allows you to quickly modify the viewing angle and projection
mode when clicking on these cones. By clicking on the white cube in the middle of
the Gizmo or the text at the bottom, you can alternate between the Perspective and
Orthographic cameras (the latter is sometimes referred to as an isometric or 2D
camera). The text below the Gizmo indicates the current view. The padlock icon
enables or disables the rotation of the camera view. This can be useful when a
game has a fixed camera angle that you want to work with most of the time.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/GridSnapping.html
https://docs.unity3d.com/2022.2/Documentation/Manual/PositioningGameObjects.html
https://docs.unity3d.com/2022.2/Documentation/Manual/PositioningGameObjects.html
https://docs.unity3d.com/2022.2/Documentation/Manual/SceneViewNavigation.html

44 of 112 | unity.com© 2023 Unity Technologies

The scene gizmos to manipulate a GameObject in a 3D space will always follow
the following color code: red to manipulate the X axis, blue for the Z or depth
axis, and green for the Y axis.

A perspective camera view on the left and orthographic on the right

Creating GameObjects

You can create a GameObject in two ways: from the top bar Menu >
GameObject, or by dragging and dropping assets directly into the Hierarchy
window or Scene view.

Unity uses the concept of parent-child hierarchies, or parenting, to group
GameObjects. Learn about parenting, organizing GameObjects, creating child
GameObjects, and more on the Hierarchy window page in Unity documentation.

Not all assets can be converted into a GameObject automatically, but the most
common types can. If you add an FBX file (3D model) into the scene, a new
GameObject with the required components to visualize the model will appear in
the Hierarchy.

Static and dynamic GameObjects

GameObjects that don’t move at runtime, such as props or models, are known
as static GameObjects. They can be marked as such by checking the box Static
on the right side of the GameObject name field. Dynamic GameObjects are
those that move at runtime.

Many systems in Unity can precompute information about static GameObjects in
the Editor. This means that Unity can save on runtime calculations and help
improve performance. When changing the static setting of a parent
GameObject, you will be prompted to decide if you want all its children to have
the same updated static setting, which can save you considerable time if you
have a project with hundreds of nested props.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/Hierarchy.html
https://docs.unity3d.com/2022.2/Documentation/Manual/StaticObjects.html

45 of 112 | unity.com© 2023 Unity Technologies

Active/inactive GameObjects

You can mark a GameObject as inactive to temporarily remove it from the Scene
view. A common example for this is having inactive GameObjects in a scene that
are then enabled during gameplay when the player reaches a certain point.
Components attached to inactive GameObjects are also disabled. By
deactivating a parent GameObject, you also deactivate all of its child
GameObjects.

You can assign tags from the dropdown menu and add new tags under Add tag.

Tags

A tag is a reference word you can assign to one or more GameObjects. For
example, you might add “Player” tags for player-controlled characters, an
“Enemy” tag for non-player-controlled characters, a “Collectable” tag for items
the player can collect, and so on.

Tags help you identify GameObjects when scripting. Using tags is a more optimal
way to reference GameObjects than by their name because the latter can change
during development. Tags are useful for collision detection logic. For example, if the
collided GameObject has an “Enemy” tag, you might want to execute some logic
with that GameObject, such as disabling it. Development teams should come to an
agreement early on in game production regarding how objects should be tagged.

Prefabs: Reusable GameObjects

The Prefab system is a tool for filling out a level reliably and efficiently, making it
one of the most important tools to use as a level designer.

A newly created GameObject in the Scene view only belongs to that scene. You
can duplicate the object, but if you need to make changes to those objects later
on, it has to be done manually to every duplicate. Clearly, that’s not a viable way
to make a game where many elements are repeated frequently across scenes.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/Prefabs.html

46 of 112 | unity.com© 2023 Unity Technologies

An example of Prefabs, the building blocks for an environment

Unity’s Prefab system allows you to create, configure, and store a GameObject,
with all its components, properties, and child GameObjects, as a reusable Asset.
The Prefab Asset acts as a template from which you can create new Prefab
instances in the scene. These assets can then be shared between scenes or
other projects without having to be configured again.

Prefabs are editable. You can edit a Prefab on a per-object basis, where a single
instance of a Prefab is changed in the scene, or changes can be applied to all
instances of the Prefab. This makes it efficient to fix object errors, swap out art,
or make other changes.

Modified instances of a Prefab have a blue line next to the properties that
override the ones from the original Prefab. All overrides can also be displayed at
once via a dropdown menu. Overrides can be transferred to the original Prefab

The Prefab selected in the Hierarchy view can also be found in the Project view as an asset, which you can reuse as
many times as needed.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/AssetWorkflow.html

47 of 112 | unity.com© 2023 Unity Technologies

Asset using the Apply command, which will also transfer the changes to all the
other Prefab instances. Another option is to use Revert to go back to the original
Prefab values, or you can simply leave the modified instance in the scene.

The Overrides dropdown related to the Scale changes (with a blue line next to it); from this menu, you can apply the
change to the Prefab or revert the values back to the original Prefab.

Nested Prefabs allow you to insert Prefabs into one another in order to create a
larger Prefab. For instance, it could be a building that’s composed of smaller
Prefabs, such as those for the rooms and furniture. This makes it easier to split
the development of assets across a team of multiple artists and developers who
can work on different parts of the content simultaneously.

A Prefab Variant allows you to derive a Prefab from other Prefabs. Prefab
Variants are useful when you want to have a set of predefined variations of a
Prefab, for example to create variations of an enemy character with different
stats or material. To create the Variant, drag an existing Prefab that was
modified in the scene to the Project view.

The pop-up menu when you drag a modified Prefab to the Project view

https://unity.com/

48 of 112 | unity.com© 2023 Unity Technologies

A Prefab Variant inherits the properties of another Prefab, called the base.
Overrides made to the Prefab Variant take precedence over the base Prefab’s
values. A Prefab Variant can have any other Prefab as its base, including Model
Prefabs or other Prefab Variants. You can also remove all modifications and
revert to the base Prefab at any time.

Nested Prefabs and Variants also work well with version control systems. Team
members can work simultaneously in different Prefabs, update without conflict,
and allow developers to always keep a backup of the different parts.

3D or 2D

You can create both 3D and 2D games in Unity or even combine both graphic
styles in the same project. The Editor, coding workflows, and some tools work in
the same way in both perspectives. There are, however, differences and there
are tools specific to each type of game, such as Terrain for 3D or Tilemap for 2D.
2D and 3D assets are also handled differently in Unity. The table below lists
some differences and similarities between the two perspectives.

Feature area 3D project 2D project

Common assets 3D model Sprite

Render pipelines Built-In Render Pipeline,
URP, HDRP

Built-In Render Pipeline,
URP

Prototyping ProBuilder 2D Tilemap Editor

Lighting Lights 2D Lights

Physics Physics 2D Physics

Character rigging Prerigged model in DCC
or Animation Rigging

2D Animation

Environment design Terrain 2D Tilemap Editor

Splines Splines 2D SpriteShape

Animation Animation window, Animation Controller

Camera systems Cinemachine

Special effects Particle System and VFX Graph

Shader authoring Shader Graph

Coding C# and Unity Visual Scripting

UI Unity UI and UI Toolkit

Input controls Legacy Input or Input System

.
3D assets

A 3D mesh is the structural build of a 3D model made up of multiple polygon
shapes. In Unity, two components need to be added to a GameObject in order to
attach a 3D model to it, and then render it to the screen: a Mesh Filter and a
Mesh Renderer.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/2Dor3D.html
https://docs.unity3d.com/2022.2/Documentation/Manual/mesh-introduction.html
https://docs.unity3d.com/2022.2/Documentation/Manual/models.html
https://docs.unity3d.com/2022.2/Documentation/Manual/class-MeshFilter.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html

49 of 112 | unity.com© 2023 Unity Technologies

Materials define how to render the surface of the 3D mesh, combining
information about the visual appearance of the surface, such as textures, color
tints, and shaders.

Shaders are a series of instructions that run on the GPU that determine how
Unity displays GameObjects onscreen. Each render pipeline in Unity comes with
prebuilt shaders, so each pixel renders based on lighting input and Material
configuration.

File formats

Unity uses the FBX file format internally, so it’s recommended that you also use
it wherever possible in your production to avoid proprietary model file formats.
For example, if you use Blender and save your .blend files in the Unity project’s
Asset folder, everyone else working on the project will have to install and use
the same version of Blender.

Unity imports meshes from other DCC software with all nodes in their saved
position, rotation, and scale. Pivot points and names are also imported, along
with vertices, polygons, triangles, UVs, normals, bones, skinned meshes, and
animations. As you iterate on assets in other supported DCC software, Unity will
update the corresponding GameObject and reflect your changes in the Unity
Editor every time you save the file.

A GameObject of a 3D model on the left and a 2D sprite on the right

2D assets

Sprites are 2D graphic objects. If you’re used to working in 3D, sprites are
essentially textures, but there are special techniques for combining and
managing them efficiently during development. To make sure Unity manages
textures as sprites when you import them in your project, check the Project
Settings > Editor > Default Mode Behavior, and select 2D. If you started the
project from a 2D template, this is already set up.

https://unity.com/
https://docs.unity3d.com/Manual/shader-introduction.html
https://docs.unity3d.com/2022.2/Documentation/Manual/render-pipelines-overview.html
https://docs.unity3d.com/2022.2/Documentation/Manual/HOWTO-ImportObjectsFrom3DApps.html

50 of 112 | unity.com© 2023 Unity Technologies

Unity provides tools like the Sprite Editor to configure the source asset,
including setting the resolution of the asset, its mesh or outline, slicing options,
skinning and rigging, and adding normal and mask maps for 2D lighting.

For 3D assets, it’s the poly count or texture size that defines the resolution of
the asset, while for 2D assets, you work in PPU or Pixels Per Unit, which tells
Unity the resolution of the sprite per unit. If the camera gets too close to the unit
but there’s not enough pixels of resolution, you’ll see pixelation; on the other
hand, using a higher resolution than needed can result in a waste of
performance and memory. Read this blog to learn more on 2D asset resolution.

File formats

It’s recommended to import your sprites in lossless formats, such as PNG. Unity
supports the most common image file types, such as BMP, TIF, TGA, JPG, and
PSD. If you save your layered Photoshop (.psd) files in your Assets folder, Unity
imports them as flattened images unless you install the 2D PSD Importer
package, which enables it to read the layers information making the import
process more efficient. Learn more about the 2D PSD Importer in this blog.

Dragon Crashers, a 2D demo from Unity, is available on the Unity Asset Store.

https://unity.com/
https://blog.unity.com/engine-platform/choosing-the-resolution-of-your-2d-art-assets
https://docs.unity3d.com/Packages/com.unity.2d.psdimporter@8.0/manual/index.html
https://blog.unity.com/engine-platform/how-to-speed-up-2d-art-workflows-with-2d-psd-importer

51 of 112 | unity.com© 2023 Unity Technologies

Coding

There are two ways to create game logic in Unity: Write C# scripts or connect
and group nodes and graphs in Unity’s visual scripting system. It’s likely that
programmers will provide the bulk of a game’s code, but as part of the early
prototyping process, it can be helpful to designers to have a basic
understanding of how scripting works in Unity.

A Unity C# script on the left, and visual scripting on the right

Quick overview of C#

Scripting tells GameObjects how to behave. It’s the scripts and components
attached to the GameObjects, and how they interact with each other, that
creates gameplay.

A script makes its connection with the internal workings of Unity by
implementing a class derived from the built-in class called MonoBehaviour. This
class is used by GameObjects and provides functions that make it possible to
develop a game. Unity doesn’t come with a tool to write code or IDEs, but there
are packages in the Package Manager to enable you to use Microsoft Visual
Studio, Microsoft Visual Studio Code, or JetBrains Rider.

A Unity component highlighted in the Inspector (left) and how it looks in code (right)

https://unity.com/
https://blog.unity.com/engine-platform/10-ways-to-speed-up-your-programming-workflows-in-unity-with-visual-studio-2019
https://docs.unity3d.com/Packages/com.unity.ide.rider@3.0/manual/index.html

52 of 112 | unity.com© 2023 Unity Technologies

Creating a new script

You can create a new script asset in the Editor via Assets > Create > C# Script
or in the Inspector window, via Add Component > New Script.

When Unity creates a new script asset, it prepopulates the script with some
default code.

A Unity script asset in the IDE Microsoft Visual Studio Code

Let’s take a look in more detail at the above script asset:

	— The keyword using imports a namespace. Namespaces include classes
and functions that you can use in your code. Using UnityEngine is
necessary to make use of Unity functions like Start or Update.

	— Comments have two forward slashes at the beginning of the line, and it’s
common practice to briefly explain the functionality you are trying to
achieve in the code before variables or functions. Comments are always
ignored by Unity when running the game.

	— The class name (which should match the asset filename), derives from the
class MonoBehaviour. It allows the script to be attached to the
GameObject as a component. Everything inside this class is contained
between brackets, variables, and functions.

	— There are some special event functions that Unity executes automatically
when the game runs. The function Start is automatically executed when
the GameObject loads, and the function Update runs every time a game
frame is rendered. You can see the order of execution of event functions in
this detailed graph. You will want to write your functions in the right place
based on your needs. For example, it’s common to store references to
other components as variables just once, inside the Start function, to use
them later in the Update function.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2022.2/Documentation/Manual/ExecutionOrder.html

53 of 112 | unity.com© 2023 Unity Technologies

A script example

In the example below, the cube object has a script attached (highlighted in the
Inspector window in the image) that rotates the cube and prints a message to
the console. Let’s look at this script in more detail:

A simple script in the Editor and in the IDE

	— The class ScriptExample contains some variables, including a string, bool,
and float. These are public variables, meaning they will be exposed in the
Inspector to tweak and access from other scripts. Private variables are not
displayed in the Inspector and cannot be accessed by other scripts. Both
public and private variables have a predefined value in the declaration.

	— Inside the Start function, which is invoked only once, is an instruction to
print a message to the Console window.

	— Inside the Update function is some basic logic with an if statement. If the
condition is true, the cube will rotate on the X-axis at the _rotateSpeed
multiplied by Time.deltaTime to make the movement frame rate
independent. Transform is a shorthand to access the Transform
properties of the GameObject with the attached script. This modifies the
rotation of the object and is executed every frame.

	— An Event function has been added (that doesn’t come with the default
code), that will trigger Unity when the mouse is clicked. Then, the script
prompts for another message to be printed in the Console window.

Ideally, a script should only try to solve one goal. This is the single-responsibility
principle in programming: Each module, class, or function is responsible for one
thing and encapsulates only that part of the logic.

This allows you to keep your code modular. Modular, single-responsibility scripts
are easier to reuse, extend, and test against other systems. If your script is
trying to solve more than one assignment, it might work better by being split
into smaller scripts with self-contained functionality.

You can read more about applying programming principles and design patterns
in Unity projects in this blog post.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/Console.html
https://blog.unity.com/games/level-up-your-code-with-game-programming-patterns?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

54 of 112 | unity.com© 2023 Unity Technologies

Level up your code with game
programming patterns

This e-book explains well-known design
patterns and shares practical examples
for using them in your Unity project.

By implementing common game
programming design patterns in your
Unity project, you can efficiently build
and maintain a clean, organized, and
readable codebase, which in turn,
creates a solid foundation for scaling
your game, development team, .
and business.

Learn resources

Coding in Unity is a very broad topic. Any game functionality can be created
with scripts, as can custom Editor tools and, via Unity APIs, any objects at
runtime. If you are completely new to scripting, you can start with a few
beginner resources:

	— Coding in C# in Unity for beginners

	— Beginner scripting tutorials from Unity Learn

	— Creating and using scripts from the Unity manual

Unity Visual Scripting

Unity Visual Scripting is a node-based graph tool that programmers and non-
programmers can use to design gameplay logic and interactivity – both in
prototyping and game production – without writing code.

Download the e-book

During gameplay, you can see the flow of data visually in Unity Visual Scripting. The nodes feature a green arrow
representing the flow of execution from left to right, the orange port the variable, and the gray ports the input and
output value of the variable.

https://unity.com/
https://unity.com/how-to/learning-c-sharp-unity-beginners?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://learn.unity.com/project/beginner-gameplay-scripting
https://docs.unity3d.com/2022.2/Documentation/Manual/CreatingAndUsingScripts.html
https://unity.com/features/unity-visual-scripting?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns?ungated=true%3Futm_source&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

55 of 112 | unity.com© 2023 Unity Technologies

Visual Scripting has some key features useful for designers:

	— Visual nodes: Creating logic with nodes enables you to focus on setting
up valid connections, helping to potentially reduce trial and error.
Additionally, you can see what nodes are not active and the logic flow
between nodes and the data passed on. Learn about nodes in the docs.

	— Simplified logic: A State Graph is a state machine system. It allows users
to visually define what logic to run based on the active state of the object
and when to transition to another state. A state graph is useful for objects
that require logic ramifications like the AI of an enemy.

	— Changes to nodes in Play mode: Change behaviors on the fly while the
game is running instead of having to exit Play mode first.

Creating a new Script Graph

Graphs are visual representations of logic, and are therefore at the core of visual
scripting. There are two kinds of graphs:

	— Script (Flow) Graphs connect individual actions and values in a specific
order. The order of execution is the flow of the script.

	— State Graphs create different states and the transitions between them.

To create your first Script Graph (behavior) for your GameObject, go to Window
> General > Hierarchy, or press Ctrl+4 (macOS: Cmd+4) to open the Hierarchy
window. In the Hierarchy, select the GameObject, click Add Component, and
select Script Machine.

From here, you can indicate if you want to reuse an existing behavior, select a
Script Graph asset as the source, or get started with a new behavior with the
source embedded. You can always convert the embedded behavior into an
asset with the Convert button.

The component using a Script Graph asset on the left and a self-contained behavior on the right

To create your first behavior, open the graph with Edit Graph or by opening the
asset in the Project view. The Graph Editor will be empty, so you need to add
some nodes to create the logic. You’ll probably want to add an Event node first,
since this will trigger the behavior.

You’ll find a complete list of all available nodes under the Nodes reference
section in Visual Scripting documentation.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-nodes.html
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-graph-types.html
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-graph-types.html
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-interface-overview.html#the-graph-editor
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-nodes-reference.html

56 of 112 | unity.com© 2023 Unity Technologies

Creating a new node with the options for Variable nodes on the right

Variables in Visual Scripting

To create logic, you need to work with variables, which act as a container for a
piece of information that might change as an application runs. A variable needs
a name, the type of data it holds, and its default value. Variables also have
scopes. A variable’s scope determines which parts of your Script Graph can
access which variables to read or modify their values. The scope can also
decide whether another Script Graph can access a variable.

The following table shows the different variable scopes.

Scope Description Visualization in Unity

Flow Variable Needs to be created and used
directly or indirectly in the same
flow; flow variables have the
smallest scope

Only accessible from the Graph Editor

Graph Variable Available to any node in the same
Script Graph; you can create and
add them from the Blackboard
element

Accessible from the Blackboard area

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-variables.html
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-interface-overview.html#the-blackboard

57 of 112 | unity.com© 2023 Unity Technologies

Object Variable Can be used by any Script Graph,
Subgraph and State Graph attached
to a specific GameObject

Accessible from the Blackboard area and the GameObject’s Inspector

Scene Variable Belongs to the current scene;
access Scene variables from any
Script Graph attached to a different
GameObject in a single scene

A Scene Variable

App Variable Belongs to an entire application,
accessible across multiple scenes
while the application runs

Accessible from the Blackboard area

Saved Variable The same scope as an App variable,
but with the difference that it will
persist if the app quits; called
PlayerPrefs in Unity

Accessible from the Blackboard area

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/PlayerPrefs.html

58 of 112 | unity.com© 2023 Unity Technologies

A Scene variable and Graph variable used in a simple Script Graph that rotates the attached GameObject

State Machines with State Graph

State Graphs are components attached to the GameObject in which the logic
can be an asset or embedded in the GameObject. They are created in the same
way as a Script Graph. State Graphs create AI behaviors or scene structure. The
states tell the object how it should behave while in that state. For example, think
of behaviors as “patrolling” or “chasing” for an enemy AI, or a door being in
“locked,” “unlocked,” or “open” states. The logic to transition from one state to
another lives in the transitions, essentially, Script Graphs that can trigger the
transition. For example, when the “player” gets too close to the “enemy” this
changes the state from ”patrolling” to “chasing.”

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-creating-transition.html

59 of 112 | unity.com© 2023 Unity Technologies

Let’s step through the State Graph in the image above:

1.	 This is the starting state, marked with the green bar at the top of the node
(you can toggle a state as starting state by right clicking on it). A new
state creates three events: Enter, Exit, and Update. You can use these to
start creating the logic.

2.	 These are two transitions. One will trigger the transition state when the
object is clicked on (shown above), and the other transition evaluates a
certain condition on Update and makes the transition when the condition
is met. The icon in the hexagonal shape of the transition graph gives a
visual hint to what event will be used by the transition behavior.

3.	 This is the currently active state, indicated by the blue header line. Debug
messages are printed when this state is entered and exited. In this state
the object is rotated (shown below).

Visual scripting and C# scripts can also work together in the same project. For
example, programmers in the team can create custom visual scripting nodes for
designers to work on functionality in a controlled environment. For example,
many studios often have their developers create custom visual scripting nodes
to allow designers to easily make use of functionality or events handled by the
game’s codebase.

This presentation showcases the possibilities of Unity Visual Scripting for
programmers.

More resources

	— Unity Visual Scripting page

	— Visual Scripting application: Clive the Cat's

	— Visual Scripting documentation

	— Unity Visual Scripting for artists and designers

Physics

Unity provides a complete set of 3D and 2D physics systems for realistic physics
simulation. The Built-in 3D Physics system is used for mesh-based
GameObjects. The 2D Physics system uses GameObjects based on sprites.

Balancing and adjusting physics parameters is an important part of designing
gameplay. Almost all games will need physics simulations and interactions, such
as gravity, object collisions, objects reacting to one another, and so on.

https://unity.com/
https://www.youtube.com/watch?v=8cKAWsEQEdg
https://unity.com/features/unity-visual-scripting?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://learn.unity.com/project/visual-scripting-application-clive-the-cat-s-visual-crypting
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/index.html
https://www.youtube.com/watch?v=Q0aXoLPK7tM
https://docs.unity3d.com/2022.1/Documentation/Manual/PhysicsOverview.html
https://docs.unity3d.com/2022.1/Documentation/Manual/Physics2DReference.html

60 of 112 | unity.com© 2023 Unity Technologies

Creating collisions

Collider component

Colliders are applied to GameObjects to represent their physical form in a
physics simulation. There are primitive-shaped Box, Capsule, Sphere, or Wheel
Collider components that you can change with the Edit Collider button. These
primitive shapes are often enough for iterating on core gameplay mechanics.

The physics system uses the Unity unit as a reference to replicate real-world
physics. The unit scale equals one meter. Objects of different sizes should be
modeled to an accurate scale. A human character, for example, should be
around two units tall. It’s important to use the right size of mesh for your
GameObject: A crumbling skyscraper will need to fall apart differently in a scene
than a tower made of toy blocks.

The Collider component defines the physical boundaries of the object. When
you add a Static Collider to a GameObject the physics system treats the object
as solid and immovable.

Rigidbody component

To simulate physics-based behavior such as movement, gravity, collision, and
joints, you need to configure items in your scene as rigid bodies. This is done by
adding a Rigidbody component to a GameObject. The Rigidbody component
provides a physics-based way to control the movement and position of a
GameObject.

GameObjects with a Rigidbody component can then collide realistically with
static objects. Dynamic Rigidbody objects can also collide with each other, for
example, like two snooker balls knocking up against one another.

An image from Creator Kit: Puzzle, a tutorial project for new Unity users that’s available in the Unity Asset Store

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/CollidersOverview.html
https://docs.unity3d.com/2022.1/Documentation/Manual/class-Rigidbody.html
https://assetstore.unity.com/packages/templates/tutorials/creator-kit-puzzle-149311

61 of 112 | unity.com© 2023 Unity Technologies

Let’s look at two important settings in the Rigidbody component:

	— The Is Kinematic property allows the Rigidbody to affect other objects via
Physics but will not be affected itself. For example, a hand avatar in a VR
game can interact with objects via physics, but you would not want
physics to act on the hand or a moving platform where the player needs to
jump to.

	— The Use Gravity property is, as its name indicates, the gravity force that
affects the GameObject. If the property is left unchecked, the object can
still be pushed by others, but it will look weightless since there’s no
deceleration due to the gravity force.

The green spheres in the image above are dynamic rigidbodies capable of interacting with other dynamic, static, or kinematic objects. In Play mode, you would see how the simulated
gravity pulls the dynamic rigidbodies downward so they collide with the other elements. The orange cube is a kinematic object; a script makes it move back and forth without reacting
to other forces, resulting in it going through the static wall and having no resistance when pushing the green sphere.

As you get closer to the workings of physics collision in Unity, you will find some
common terminology throughout tutorials and documentation.

Terminology Components
needed

Movement Common
implementation

Use case

Static
collider

Collider, i.e.,
box collider,
sphere
collider, etc

None Added during
level design
process in the
Scene view

Walls,
boundaries,
large props,
terrain ground,
static objects

Kinematic
Rigidbody
Collider

Collider and
Rigidbody (Is
Kinematic
property
enabled)

Yes, but
doesn’t
react to
external
forces

Movement
pattern
implemented in
the code or with
animation

Moving
platforms, large
animated props,
characters or
objects that are
scripted or in a
VR game, e.g., a
virtual hand
that can
interact with
objects

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/PhysicsOverview.html

62 of 112 | unity.com© 2023 Unity Technologies

In most cases, a component called Character Controller will be used for the
player character. The Character Controller enables a 3D character to interact
with the physics world around it without necessarily behaving in a realistic way
(depending on the style or genre of the game, you’ll often want to give the
player more control and precision than is realistic).

The Unity sample projects Third Person Character Controller and First Person Character Controller include a playable
character controller already set up.

Rigidbody
Collider or
dynamic
Rigidbody

Collider and
Rigidbody (Is
Kinematic
property
disabled)

Mass,
gravity,
and drag
will affect
the way it
reacts to
forces;
collides
with static,
kinematic
and
dynamic
objects

Set up in the
Scene view for
inanimate
objects or apply
forces or
velocity to them
in code

Physics-based
gameplay
elements like
puzzle objects,
interactable
objects, or
props .
that need to
react to gravity

Character
Controller

Character
Controller

Precise
movement
(although
not always
realistic);
reacts to
forces,
collides
with static,
kinematic,
and
dynamic
objects

Controlled by
player input in
code

Playable
characters
where precision
is needed over
realistic physics
simulation, i.e.,
in an first-
person shooter
game

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/CharacterControllers.html
https://assetstore.unity.com/packages/essentials/starter-assets-third-person-character-controller-196526#reviews
https://assetstore.unity.com/packages/essentials/starter-assets-first-person-character-controller-196525#reviews

63 of 112 | unity.com© 2023 Unity Technologies

Trigger colliders

A collider configured as a Trigger (using the Is Trigger property) can be used
when an object needs to detect or react to another object without physical
contact. This property enables the object(s) in question to act like a sensor. A
few examples of where you would use the Is Trigger property is to designate
entry, autosave, or exit areas.

The implementation of functionality in code is very similar to the collision
scenario with rigidbodies, but this time the objects will receive trigger messages
(OnTrigger) instead of collision messages (OnCollision) upon collision.

Trigger colliders can recognize when an object enters, stays at, or leaves the collider. In this example, a cutscene or
sequence at the end of a level is triggered when the player reaches the top of the building by entering the yellow cube.

Trigger messages will occur when a static, rigidbody, or kinematic collider with
Is Trigger enabled interacts with a non-trigger rigidbody and kinematic colliders.
Static trigger colliders won’t interact with each other or a static non-trigger
collider.

Physics layers

Layer-based collisions provide a way to make a GameObject collide with another
GameObject that is set up in a specific Layer or Layers. In the Project Settings,
you will find a Collision Matrix that defines which GameObjects collide with
which Layers. For example, you can define that bullet objects in the Layer
“Bullets” don’t collide among themselves in the same layer, but do collide with
objects in the layer “Ground Enemies.”

Tip: To maintain performant physics, enable only the collision layers that you need.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/CollidersOverview.html
https://docs.unity3d.com/2022.2/Documentation/Manual/LayerBasedCollision.html

64 of 112 | unity.com© 2023 Unity Technologies

Level design with physics

As you populate big scenes with a mix of static and dynamic objects, it can get
difficult to test your gameplay and understand why mistakes are happening,
such as a character going outside the level boundaries or an object not acting
as a trigger when it should.

You can enable the Physics Debugger in the Editor under Window > Analysis >
Physics Debugger (make sure to have the Scene Gizmos visible). The Physics
Debugger will show and highlight the different types of Colliders and Rigidbody
components in the scene. You can select to hide some types and filter by
Physics layers. This makes it efficient to find the root cause of a problem, even
with many objects in the scene.

The colorful spheres in the Spheres Layer collide with the floor in the default Layer but not with themselves.

From the Physics Debug mode window, you can customize visual settings and specify the types of GameObjects you
want to see or hide in the visualizer.

The Physics Debugger is used on a regular basis by game designers to quickly
get visibility of collision problems. Physics debugging is also useful if you’re
developing with products such as UModeler or the ProBuilder tool in Unity. .
As you modify meshes, you might forget to update the collision setup; the
Debugger will help you to pinpoint where the updates are needed.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/PhysicsDebugVisualization.html
https://docs.unity3d.com/2022.2/Documentation/Manual/LayerBasedCollision.html
https://assetstore.unity.com/packages/tools/modeling/umodeler-80868

65 of 112 | unity.com© 2023 Unity Technologies

Physics refresh rate

In Unity, GameObjects can implement code in their scripts that will be executed
every rendered frame, known as the Update cycle. In a game that runs at 60
fps, the code inside the Update loop will be executed 60 times every second.
The problem for physics-related code is that it does not always take the same
time to render a frame. Frames can sometimes even be skipped if there’s a
slowdown, making it unreliable for physics deterministic behavior. The
FixedUpdate cycle is used for physics calculations. By default, FixedUpdate
occurs every 0.02 seconds (50 calls per second). Depending on the needs for
your game, working closely with the programmers in your team will be important
to set up the right project settings for your project needs.

You can also achieve frame-independent logic in the Update cycle with the
parameter Time.deltaTime. Let’s say that you want to apply a smooth progression
over time to an object that changes its position in a linear way every second.
Multiplying by Time.deltaTime will ensure that your logic takes into consideration
the time it takes to render the last frame to avoid looking jittery when used in the
Update cycle. If it takes more time to render the previous frame, the multiplying
value of Time.deltaTime will be higher to compensate for it.

Interpolations will help avoid stuttering in the gameplay that results from combining
FixedUpdate and regular Update events due to the different refresh rates. You can
apply the interpolate and extrapolate properties in the Rigidbody of the GameObject
that is visible and in motion. Read about the technique in this community blog.

3D physics in Unity offers many possibilities for crafting gameplay. Read about
physics for joints, articulations, ragdolls, and more in the physics documentation.

There are physics components specific to 2D projects, such as Collider 2D,
Rigidbody 2D, and 2D Joints. The principles are the same as in 3D, and the
implementation is also similar. Note that the 3D and 2D systems don’t interact
with one another, so you will have to pick one or the other perspective. Learn
more about 2D physics in the documentation.

Get an overview of 2D Physics features in this video.

A script example of how FixedUpdate and Time.deltaTime can be used to move an object linearly over time

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/class-Rigidbody.html
https://blog.terresquall.com/2020/08/unity-rigidbodys-interpolate-property/
https://docs.unity3d.com/2022.2/Documentation/Manual/PhysicsOverview.html
https://docs.unity3d.com/2022.2/Documentation/Manual/Physics2DReference.html
https://www.youtube.com/watch?v=Xxbs9x2qB7Y

66 of 112 | unity.com© 2023 Unity Technologies

Animation

Animating a vertical platform with Unity’s Animation window

Unity’s animation system is based on the concept of animation clips, which
contain information about how certain objects should change their position,
rotation, or other properties over time. Each clip can be thought of as a single
linear recording. If your object has different animation states, for example “idle,”
“disabled,” or “active,” you can use an Animator Controller, which is an
animation state machine.

The animation system

Character animations in Unity are typically created from DCC software such as
Blender, Autodesk Maya, or Autodesk 3ds Max. Unity’s Animation System
provides tools to modify, refine, procedurally adapt, and blend such animations
to bring them to life in the game or interactive experience that you are creating.

However, in level design prototypes, moving elements don’t require complex rigging
systems or scripted sequences. The animation tools in Unity will allow you to create
animations or sequences suitable for prototyping that can be fully realized and
modified by dedicated animators on your team once the level design is locked in.

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/class-AnimatorController.html

67 of 112 | unity.com© 2023 Unity Technologies

You can animate elements programmatically with the help of animation curves, as this blog explains.

Animation window

The Animation window allows you to create and modify animation clips directly
in Unity. It is designed to act as an alternative to external 3D animation software,
or to create simple animations as needed during development. It provides the
standard set of tools required for animation like Keyframes, Playhead,
Animation Timeline, and Animation Curves.

In the Animation window, you can easily change all the keyframes from the same timestamp by selecting the dot at the
top. You can change the animation duration by selecting all keyframes and moving the handles on the left and right.

Besides movement, you can animate variables of materials and components
(almost any GameObject property) and augment your animation clips with
Animation Events, which are functions called at specific points along the
Timeline, in the Editor.

Unity’s Animation window also enables you to animate:

	— The position, rotation, and scale of GameObjects

	— Component properties including Material Color, Light Intensity, .
and Sound Volume

	— Properties within your scripts, such as Float, Integer, .
Enum, Vector, and Boolean

	— The timing of calling functions within your own scripts

https://unity.com/
https://blog.unity.com/games/animation-curves-the-ultimate-design-lever?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

68 of 112 | unity.com© 2023 Unity Technologies

The generated animation clips can be used by the Animator Controller or
Animation Rigging toolkit and harnessed during gameplay or cinematics with
Timeline.

Use Animation tools like Keyframes and Curves for your project.

Animation State Machine

In Unity, the Animator Controller allows you to arrange and maintain a set of
Animation Clips and associated Animation Transitions for a character or object.

In most cases, it’s normal to have multiple animations and switch between them
when certain game conditions occur. For example, you could switch from a walk
clip to a jump clip whenever you press the spacebar. The Animator Controller
has references to the animation clips used within it, and manages these and
transitions between them using an Animation State Machine. The State Machine
can be thought of as a flowchart of clips and transitions, or a simple program
written in a visual programming language within Unity.

Ideas around GameObjects behavior can be tested visually with the Animation Controller state machines.

Blend trees are effective for hiding complexity. A blend tree doesn’t have state,
nor does it call back out into code. It simply blends between the different clips
based on the parameters that you define. This is significant because you can
iterate on blend trees without worrying about breaking the rest of your game.
You can even hide a complex web of states to prevent bugs down the road,
since you can’t tie behavior to most of the animations in a blend tree.

Unity offers Animation Layers for managing complex state machines. For
instance, use animation layers to create a lower-body layer for walking and
jumping, and an upper-body layer for throwing objects and shooting.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.animation.rigging@1.3/manual/index.html
https://docs.unity3d.com/2021.2/Documentation/Manual/class-BlendTree.html
https://docs.unity3d.com/2021.2/Documentation/Manual/AnimationLayers.html

69 of 112 | unity.com© 2023 Unity Technologies

In addition to visual animation, Animation states can trigger sound effects or C# code.

Timeline

Timeline allows you to orchestrate the elements of your scene, including
behavior, animations, and enabling or disabling objects, as well as to create
sequences or cutscenes.

As in nonlinear video editing, each layer in the Timeline interface is a track. By
assembling multiple tracks, you can create a cinematic feature composed of
audio, gameplay sequences, camera angles, particle effects, and more.

If a scripted sequence is key to your game or a certain moment in the level, you
can trigger a sequence of events, such as revealing a new door, clearing a path,
bringing new buildings or platforms into view, and so on. Consider using
Timeline to trigger the sequence calling the PlayableDirector component in a
GameObject, like this community article shows.

A scene from the Unity 2D demo Dragon Crashers being orchestrated in Timeline

More resources

	— Working with Animation Clips

	— Improve your workflow with Animation Rigging

The Unity game designer playbook

This guide presents the essential tools for
designers to prototype, create, and refine
gameplay in Unity. Get an in-depth introduction to
scripting in C#, Unity Visual Scripting, and learn
how to accomplish game design tasks with minimal
coding through input control, character controllers,
grey-boxing, and so much more. Download the e-book

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.timeline@1.8/manual/index.html
https://vintay.medium.com/set-up-trigger-a-timeline-sequence-in-unity-7fd1022f5bba
https://learn.unity.com/tutorial/working-with-animation-clips
https://www.youtube.com/watch?v=hs2goLjUz4U
https://resources.unity.com/games/game-designer-playbook?ungated=true%3Futm_source&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

70 of 112 | unity.com© 2023 Unity Technologies

 A collage of assets from the Unity Asset Store

The Asset Store is categorized in a way that makes it easy to browse and find
assets during preproduction. Some suggestions to start with:

	— The templates section offers complete game templates that come with
detailed instructions for customization. Use a template as a shortcut to
create more detailed prototypes that you can modify as you progress. For
example, you can set up a complete game loop to test while building out
the main pillars of your game.

	— Many different materials and textures for 3D and 2D projects are available. Use
ready-made materials to identify different surfaces, either to show gameplay or
for nicer-looking props and environments, as you block out a level.

	— Swap your primitive shapes for assets in the 3D or 2D asset section that .
mimic the look and feel of what will be the final versions. Everything from
environments to characters and props are available. Additionally, visual or .
audio effects can help you convey the mood that you are aiming for.

	— It’s difficult to communicate storytelling or gameplay intent when you only
have a capsule that moves in a quickly blocked-out prototype level. In the
animation section, find sets of animations with dummy characters that will
help you assemble a more accurate representation of the intended design.

	— Reusing and retargeting animations between rigs

	— Blending gameplay and storytelling with Timeline: Cutscenes .
and game graphics

The Unity Asset Store

The Unity Asset Store stocks thousands of ready-to-use assets, production
tools, game systems, and templates. It’s a valuable time-saving resource,
especially during the early stages of game, level design and preproduction,
when you need to quickly test out and iterate on the fundamental gameplay
ideas without fully developed levels, level design tools, art, or game mechanics.
If you are new to the Asset Store, then start with this guide.

https://unity.com/
https://assetstore.unity.com/templates?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://assetstore.unity.com/2d/textures-materials?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://assetstore.unity.com/3d?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://assetstore.unity.com/2d?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://assetstore.unity.com/vfx?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-artist-expansion&utm_content=game-designer-playbook-ebook
https://www.youtube.com/watch?v=KfYjMtBK4LA
https://www.youtube.com/watch?v=gsEe0_o_934
https://www.youtube.com/watch?v=gsEe0_o_934
https://assetstore.unity.com/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://docs.unity3d.com/2022.2/Documentation/Manual/AssetStore.html

71 of 112 | unity.com© 2023 Unity Technologies

P A R T I I I : L E V E L
D E S I G N T O O L S
I N U N I T Y

Every game has particular needs for how its levels are built. A match-3 puzzle
game could require custom-made level design and debugging tools that enable
you as a level designer to focus on assembling levels with the many moving
pieces that come into play. Other games might require many tools coming
together to create a large outdoor immersive environment.

Unity provides many out-of-the-box features for designing levels, and for more
customized needs, the Unity Asset Store provides many production tools. This
section looks at the main Unity tools and a selection of resources available on
the Asset Store.

Starter assets

A valuable way to test new environments is to navigate them with a playable
character. Starter Assets are free assets, provided by Unity and available in the
Unity Asset Store, that are useful for quick prototyping with a playable character
in first- and third-person cameras. These packs offer controllers built in a
modular way to serve as a solid foundation for any game genre.

The Starter Assets make use of the Character Controller component and Input
System to move the character, such as making it run, jump, or look around. It
also makes use of Cinemachine, Unity’s powerful camera system, discussed
later in this e-book.

https://unity.com/
https://assetstore.unity.com/packages/essentials/starter-assets-first-person-character-controller-196525?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-artist-expansion&utm_content=game-designer-playbook-ebook
https://assetstore.unity.com/packages/essentials/starter-assets-third-person-character-controller-196526?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-artist-expansion&utm_content=game-designer-playbook-ebook
https://docs.unity3d.com/2022.2/Documentation/Manual/class-CharacterController.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/index.html
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.9/manual/index.html

72 of 112 | unity.com© 2023 Unity Technologies

Get a character set up and ready to play

If you imported the Starter Assets in a project and the materials appear magenta,
make sure to upgrade them to the Universal Render Pipeline (URP) or the High
Definition Render Pipeline (HDRP). You can do this by going to the folder
Environment/Art/Materials. You can also select the materials in the Materials
folder and, via Window > Rendering > Render Pipeline Converter, check Material
Upgrade and then select Initialize Converters > Convert Assets.

The Third Person and the First Person asset packs include controls for all platforms. Select the scene called Playground
and try them right away.

https://unity.com/

73 of 112 | unity.com© 2023 Unity Technologies

You can have both assets in the same project in case you want to test your
levels with a first- or third-person perspective. Make sure to bring your level to
both scenes (named Playground), or alternatively, bring the character, control,
and camera Prefabs to your scenes.

Each Starter Asset comes with documentation located in the StarterAssets
folder. Search for the Scene asset Playground in the Project folder, and open it
to start using the assets.

The Third Person asset pack uses a Cinemachine camera with settings designed for a Third Person Follow, such as
options to avoid camera obstacles.

The First- and Third-Person Controller script exposes values to let you adjust the character movement. It uses the
Character Controller, which doesn’t react to forces on its own, nor does it automatically push Rigidbody components
away unless indicated in a script like the BasicRigidBodyPush script attached.

https://unity.com/

74 of 112 | unity.com© 2023 Unity Technologies

ProBuilder

ProBuilder and Polybrush are tools that enable you to design, grey-box,
prototype, and playtest levels in Unity without 3D modeling software or
professional 3D artists. Model your level with ProBuilder, then add details with
Polybrush such as paint textures, sculpting the existing mesh, and so on.

You can even release your game with levels made in ProBuilder, like the team
behind SUPERHOT did.

Start designing levels in Unity with the built-in 3D modeling tool ProBuilder.

Remember to install the support files for either URP or HDRP if your project uses those render pipelines

When you install the ProBuilder package, make sure to import the support files
(materials) that correspond to either URP or HDRP. Otherwise, the objects might
not be rendered. If you use the Built-In Render Pipeline, no action is needed.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.polybrush@1.1/manual/index.html
https://unity.com/features/probuilder

75 of 112 | unity.com© 2023 Unity Technologies

Create a ProBuilder primitive object from the top menu via GameObject >
ProBuilder > Cube (for example). ProBuilder includes a number of primitive
shapes that are useful for quick prototyping. These shapes, which also come
with a Mesh Collider component for physics, can be added in the Scene view.

ProBuilder primitives use a material with a texture that has a grid pattern of one Unity unit (equivalent to one meter in
the real world). This helps you keep track of the object scale and makes it possible to replicate in a scene the size of any
given space in the real world.

The main window to work with ProBuilder can be found under Tools >
ProBuilder > Probuilder Window. Enabling it will also add a toolbar in the Scene
view to edit ProBuilder meshes.

A new project in Unity 2022 LTS using URP, a staircase created before and after installing the support file

https://unity.com/

76 of 112 | unity.com© 2023 Unity Technologies

There are four ways to manipulate meshes in ProBuilder:

	— Object mode: The standard Unity mode to select and manipulate
GameObjects

	— Vertex mode: The element mode to select and manipulate vertices (points)

	— Edge mode: The element mode to select and manipulate edges (lines)

	— Face mode: The element mode to select and manipulate faces (polygons)

Consider setting up shortcuts for ProBuilder action under the shortcuts menu for
quick switching between manipulation modes.

ProBuilder meshes act like regular GameObjects in Unity. You can apply
Transform values, add components, physics, and scripts, and animate them.
However, standard Unity Meshes are not the same as ProBuilder Meshes: You
can’t edit them with ProBuilder until you convert them into ProBuilder objects.

A GameObject cube before and after becoming a ProBuilder mesh with the ProBuilderize action

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/UnityHotkeys.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Object_ProBuilderize.html

77 of 112 | unity.com© 2023 Unity Technologies

Although it’s common to build a ProBuilder mesh by creating and editing it
entirely with ProBuilder tools and actions, it can also be useful to modify existing
assets; for example, you can import assets from the Unity Asset Store and
modify them with ProBuilder.

A tower asset imported from the Unity Asset Store; when you convert it via the ProBuilderize action it can be modified
like a ProBuilder mesh

The ProBuilder main window is color-coded to help you choose tools by type:

	— Orange for tool panels (windows that open separately)

	— Blue for functions to set and change selection

	— Green for mesh editing actions that affect the entire object

	— Red for mesh editing functions that act on Vertex, Edge, and .
Face geometry

ProBuilder also includes tooltips for accessing additional information on features
that can be viewed by holding the mouse over a tool.

A tooltip appears when hovering over one of ProBuilder’s tools; a + symbol next to a tool indicates additional options

https://unity.com/
https://assetstore.unity.com/packages/3d/environments/fantasy/meshtint-free-turret-tower-mega-toon-series-155310

78 of 112 | unity.com© 2023 Unity Technologies

The following tables provide information on what each tool in ProBuilder does.
Many of these tools have a + sign next to them indicating they come with
adjustable options. A few of the tools listed here are covered in greater detail
later in this section.

Some of the default shapes included in ProBuilder

Color Name Reference image Description

New Shape 	— The most common tool for
creating levels in ProBuilder

	— Select one of the shapes,
then select the preferred
pivot position and define the
size either in the Scene view
or in this window T

	— Additional options available,
based on the shape, to
adjust the definition .
of the mesh

New Poly Shape 	— Create a custom 2D shape
and then extrude it into .
a 3D mesh

	— Good for quickly building.
an irregular structure

	— Also handy for creating a 3D
map out of a drawing plan

Smoothing 	— Smoothes groups of
polygons so they form a
smooth, even surface

	— Read more here

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/workflow-create-predefined.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/polyshape.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/smoothing-groups.html

79 of 112 | unity.com© 2023 Unity Technologies

Material Editor 	— Applies Materials to objects .
or faces quickly from a
defined library of materials

	— Applying materials in
prototypes to indicate intent
or function can help convey
design ideas more clearly

UV Editor 	— Similar to the smoothing
feature; best used for more
refined prototypes or level
design

	— Read more here

Vertex Colors 	— Equivalent of the Material
Editor but for untextured
models

	— Apply color to faces,
vertices, or edges to add
more information to your
level design prototypes

You need to have selected an element of the mesh like a face to enable some of the functions.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/material-tools.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/uv-editor.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/vertex-colors.html

80 of 112 | unity.com© 2023 Unity Technologies

Color Name Reference image Description

Rect 	— Use to choose whether drag
selection should only select elements
completely inside the drag rectangle,
or also elements partially inside the
drag rectangle

Shift 	— Change what happens to the
selection of vertices, faces, or edges
when you drag-select

	— Add, subtract, or invert the selected
elements

Orientation 	— Sets the orientation of the handles
when selecting objects and elements

	— Global follows the world orientation,
Local is relative to the object
rotation, and Normal follows the
normals of the faces or vertices

Select
Hidden

	— Selects or ignores elements hidden
from the camera, like the ones at the
back of the mesh when you drag
select

Select Face
Loop

	— When a face is selected, it expands
the selection to all the continuous
faces vertically

Select Face
Ring

	— When a face is selected, .
expand the selection to all the
continuous faces horizontally

Select by
Material

	— Selects all faces in the scene that
have the same Material as the
selected face

	— Limit the selection to the current
object by enabling Current Selection
in pop-up menu

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Rect_Intersect.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Shift.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/HandleAlign.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_SelectHidden.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_SelectHidden.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Loop_Face.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Loop_Face.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Ring_Face.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Ring_Face.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_SelectByMaterial.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_SelectByMaterial.html

81 of 112 | unity.com© 2023 Unity Technologies

Select by
Colors

	— Works like Select by Material but
uses vertex colors

Grow
Selection

	— Expands the selection outward to
adjacent faces, edges, or vertices
Limit the selection to elements within
a specified angle

Shrink
Selection

	— Removes elements on the perimeter
of the current selection

Mesh editing functions for a ProBuilder object are available when you select the object or one of its elements.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_SelectByVertexColor.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_SelectByVertexColor.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Grow.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Grow.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Shrink.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Selection_Shrink.html

82 of 112 | unity.com© 2023 Unity Technologies

Color Name Reference image Description

Conform
Normals

	— Fixes mismatches in triangle
winding

	— Will correct direction of stray
surfaces facing the wrong way in
selected faces

Export 	— Export the selected object to a
3D model file such as OBJ, STL,
PLY or Unity Prefab

	— Allows artists to have a
reference of your prototyped 3D
model in the DCC of their choice

	— Read more here

Lightmap UVs 	— By default, automatically
updates the lightmap UVs while
working with the mesh

	— Possible to disable it and do it
manually before baking lights

Triangulate 	— Splits faces into their base
triangles to create a faceted,
non-smooth appearance

	— Use smoothing groups to reapply
smoothing if needed

Center Pivot 	— Moves the pivot point for the
Mesh to the center of the
object’s bounds

ProBuilderize 	— Converts selected 3D objects
into editable versions in
ProBuilder

	— Useful for modifying existing
assets and adding them to a
level prototype

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_ConformNormals.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_ConformNormals.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Object_Export.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Object_LightmapUVs.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Triangulate.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/CenterPivot.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Object_ProBuilderize.html

83 of 112 | unity.com© 2023 Unity Technologies

Subdivide 	— Divides every face on selected
objects, allowing for greater
levels of detail when modeling

Flip Normals 	— Flips the normals on the selected
object only

Mirror Objects 	— Creates mirrored copies of
objects, which is useful when
creating symmetrical items

Merge Objects 	— Merges two or more selected
ProBuilder objects into a one

Freeze
Transform

	— Sets the object’s pivot point to
the current world origin position
(0,0,0) and resets rotation and
scale

Set Trigger 	— Assigns the Trigger Behavior
script to selected objects to
make it a Trigger Collider in the
game

Set Collider 	— Assigns the Collider Behavior
script to selected objects to
make it a Collider in the game

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Object_Subdivide.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_FlipNormals.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Object_Mirror.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Object_Merge.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Freeze_Transform.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Freeze_Transform.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Entity_Trigger.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Entity_Trigger.html#Collider

84 of 112 | unity.com© 2023 Unity Technologies

Mesh editing functions that act on Vertex, Edge, and Face geometry

Color Name Reference image Description

Vertex operations

Collapse Vertices 	— Collapses all selected .
vertices either to a central
point or the position of the
first selected vertex

Weld Vertices 	— Merges selected vertices
within a specific distance of
one another

	— Helps optimize the geometry
for vertices close enough to
each other

Connect Vertices 	— Creates a new edge to
connect the selected vertices

Split Vertices 	— Splits a vertex into individual
vertices (one for each adjacent
face) so that you can move the
faces independently when .
you select each one of them

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Vert_Collapse.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Vert_Weld.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Vert_Connect.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Vert_Split.html

85 of 112 | unity.com© 2023 Unity Technologies

Fill Hole 	— Creates a new face that fills
any holes that touch the
selected vertices.

Edge operations

Bridge Edges 	— Creates a new face between
two selected edges

Connect Edges 	— Inserts an edge that connects
the centers of each selected
edge

Bevel 	— Splits the selected edges into
two, with a new face between
them

Extrude Edges 	— Pushes a new edge out from
each selected edge,
connected by a new face for
each edge

	— Only works on open edges

Subdivide Edges 	— Divides the selected edges
into multiple edges (two by
default)

Insert Edge Loop 	— From the selected edge, adds
a new edge loop, which is a
series of edges directly
connected through quads.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Vert_FillHole.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Edge_Bridge.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Edge_Connect.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Edge_Bevel.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Edge_Extrude.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Edge_Subdivide.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Edge_InsertLoop.html

86 of 112 | unity.com© 2023 Unity Technologies

Fill Hole (Edges) 	— Creates a new face that fills
any holes that touch the
selected edges

Polygon face operations

Subdivide Faces 	— Splits each selected face,
adds a vertex at the center of
each edge, and connects them
in the center

Triangulate Faces 	— Splits the selected face into
their base triangles to create a
faceted, non-smooth
appearance

	— If needed, use smoothing
groups to reapply smoothing

Bevel Faces 	— Splits the edges of the
selected face into two edges,
with a new face between

Merge Faces 	— Merges selected faces into a
single face and removes any
dividing edges

Conform Normals 	— Fixes mismatches in triangle
winding

	— Will correct direction of stray
surfaces facing the wrong way
in selected faces

Flip Face Edge 	— Swaps the triangle orientation
on the selected face(s) with
four sides, resulting in a
reversal of the direction of the
middle edge in a quad

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Edge_FillHole.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Subdivide.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Triangulate.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Bevel.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Merge.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_ConformNormals.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_FlipTri.html

87 of 112 | unity.com© 2023 Unity Technologies

Extrude Faces 	— Creates a new face by pulling
out the currently selected face
and attaching sides to each
edge

	— By default, each new face
follows the direction of its
vertex normals

Duplicate Faces 	— Copies each selected face and
creates a new Mesh

Detach Faces 	— Detaches the selected faces
from the rest of the Mesh

Delete Faces 	— Deletes the selected faces

Flip Face Normals 	— Flips only the normals on the
selected faces, handy handy
for building rooms and
switching walls from external
facades to interior ones.

Common operations

Cut Tool 	— Subdivide faces; define the
cutout shape with points and it
becomes a new face on the
Mes

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Extrude.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Duplicate.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Detach.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_Delete.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Face_FlipNormals.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/cut-tool.html

88 of 112 | unity.com© 2023 Unity Technologies

Smoothing groups

Smoothing groups serve to create sharp or soft edges between faces. When
neighboring polygons do not share the same Smoothing Group, this creates a
hard edge between them. Imagine the polygons that comprise a car’s
windshield, or front window: They would make up one smoothing group, while
the polygons that comprise the hood would be another group. If the windshield
and car hood polygons are all part of the same mesh, both will be smoothed but
not treated as the same surface.

The second sphere has the Smooth option disabled. You can change this setting in the Inspector by selecting the object.

Offset 	— Lets you enter a precise value
to move vertices, edges, and
faces

Set Pivot 	— Move the pivot point of this
Mesh to the average center of
the selected vertices, edges,
or faces

https://unity.com/
https://en.wikipedia.org/wiki/Smoothing_group
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Offset_Elements.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/Vert_SetPivot.html

89 of 112 | unity.com© 2023 Unity Technologies

In ProBuilder, new shapes have all faces smoothened by default. For more
control with smoothing groups, uncheck the Smoothing option (as shown in the
image above).

The Smooth Group Editor Window offers options to help you set up and
previsualize the different smoothing groups.

When the Smooth Group Editor window is open, the mesh will show the different groups by color code.

With the Preview option, you can adjust the transparency of the color code of
the faces by smoothing group, and blend them in with a dither effect. You can
also previsualize the normals of the vertices.

The previous example looks like the following in the Game view:

Notice how the top of the cylinder and its bottom half don’t have any smoothing, resulting in the edges of the faces
being visible. The top two parts are smoothed, however, a seam is visible in the middle. This is due to the two parts
belonging to different smoothing groups and therefore being treated as different surfaces.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/smoothing-groups.html

90 of 112 | unity.com© 2023 Unity Technologies

Let’s look at the steps to set up smoothing groups:

1.	 Select the faces of the object that will belong to the same group, so they
will be treated as the same surface.

2.	 Click one of the buttons from 1 to 23 in the Smooth Group Editor window,
and the selected faces will be assigned to that group. .
a. A thin color line will appear under the button you clicked. This indicates
that a group is now created, with the color of the line matching the color
of the previsualization for the group. The faces belonging to group 2 in the
above image are yellow in the previsualization image shown further up, as
is the line under the button.

3.	 Select another set of faces and click on a new button to assign them to a new
group with a different color. Repeat the steps as many times as necessary.

There are two options for selecting the faces belonging to one of the groups:

	— Right-click on the button of the group that you want to select.

	— Select one of the faces in the object, and click on the button with
a blue arrow to expand the selection to all the faces belonging to
the same group. .
.
To remove a group, select all the faces of the same group as
mentioned before, and then click on the button with blue faces.

UV Editor

This is the UV Editor window for a cylindrical shaped object and the default UV mapping.

You can manage texture mapping on a selected mesh with the UV Editor. .
Let’s look at its main work areas:

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/uv-editor.html

91 of 112 | unity.com© 2023 Unity Technologies

1.	 This is the same toolbar as that in the Scene view with options to move,
rotate, and scale vertices, edges, or faces.

2.	 These buttons enable you to manipulate the UV mapping coordinates
directly from the Scene view when they are enabled. They are colored when
active and gray when not. .
a. The button with arrows locks the transform tools on the Scene view to
manipulate the UV instead of the transform of the selected element in the
Scene view (edge, vertice, face, or object)..
.
b. The “brick” button enables the preview of the texture coming from the
shader at coordinates 0,0..
.
c. The camera button will output the texture with the polygon wireframe
overlaid on the texture for reference when editing the image in DCC
software. By default, it will save the file in your project Assets folder.

3.	 Select UV to edit the UV mapping for shaders. Select UV2 (read-only) to
regenerate your baked or real-time lightmaps.

4.	 There are two ways to work on UV mapping for the selected object:.
.
a. Auto: ProBuilder manages the texture mapping according to the settings
in the Actions panel, even when you resize the mesh. This is the default
option and probably enough for most level design work, especially if you will
only work with repeating patterns for prototyping purposes..
.
b. Manual: This method allows you to precisely unwrap and edit UVs, render
UVs, and more. It’s recommended for positioning the UV elements against a
detailed image. You can watch this tutorial for a step-by-step look into
advanced texturing with manual UVs.

5.	 You can manipulate the elements to neatly arrange them in a way to match
the shader texture. In the image above, a selected face is highlighted in blue.

Quick texturing exercise

When working in Auto mode, grouping elements, similar to a smoothing group,
will allow you to manipulate the grouped parts as one element. This is handy for
moving, scaling, or rotating the selected element.

In this exercise, three groups were created for the top, bottom, and side faces of
the cylinder. One texture is used for this object and the UVs are mapped to the
texture. To do this, the three groups were selected and redistributed within the
square area representing the texture.

https://unity.com/
https://www.youtube.com/watch?v=d3_2h4cN4cY

92 of 112 | unity.com© 2023 Unity Technologies

When the new UV mapping is as it should be, you can export the texture to paint
over the object in your preferred DCC tool.

The faces on the top of the cylinder are grouped so they can be moved and scaled as one. The texture preview is
disabled since the texture will be created later, based on the new UV mapping. In this exercise, if a designer is not happy
with the changes, they can change it to the default UV mapping with the Reset UV option.

This is a simple exercise that shows how to quickly texture an object when prototyping level design.

Let’s go over each of the steps illustrated in the above images, from left to right:

Far left: The texture UV map is imported for painting in a DCC tool..
Center left: The wireframe is being used for reference when painting..
Center right: The image file is brought back into Unity and a material is created
with this texture as BaseMap. You can keep iterating on a texture, as long as it’s
inside your Unity project and used by the material. It will refresh automatically
every time you save changes to the image..
Far right: The material is applied to the ProBuilder object.

https://unity.com/

93 of 112 | unity.com© 2023 Unity Technologies

See documentation to learn more about each option available in the UV editor
for Auto and Manual modes.

Tip: Color coding for fast level design

Color coding while boxing out levels can help convey your intent and ideas more
clearly. For example, you can communicate to the rest of your team which
elements are destructible by coloring those red.

In the Vertex Colors feature, select the “plus” icon to create a color palette.
Customize a palette to define the colors (and the number of colors) that you
want in your scene. To color an object, select it in the Scene, and click Apply.
You can apply color to individual faces as well, then share your saved palette of
colors with your team so that everyone is using the same color-coding
standards.

A color-coded grey-boxed scene

Tip: Enable dimension overlays for ProBuilder

Under Tools > Probuilder > Dimensions Overlay, you can enable floating labels
indicating the size of the current selected object in the scene.

Handy visualization of the height, width, and depth of the selected object

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/auto-uvs-actions.html
https://docs.unity3d.com/Packages/com.unity.probuilder@5.0/manual/manual-uvs-actions.html

94 of 112 | unity.com© 2023 Unity Technologies

Sharing ProBuilder levels with environment artists

If you install the FBX Exporter package, you’ll be able to export your prototyped
level assets, with the correct dimensions, to a DCC application for an artist to
polish and refine them.

When you install the FBX Exporter package, under GameObject > Export To FBX, you’ll have options to export your
model to share with your artists.

Defining a clear work plan with the team will allow for a smooth and efficient
design process where the artists will be able work based on the right size and
shape of the 3D environment objects seamlessly.

You can also use ProBuilder or Unity Asset Store tools to “kitbash,” which
involves combining different assets to create something original and new. The
idea comes from modeling hobbyists, who mash up model train or airplane kits
to build their own custom projects.

Guns of Boom (right) alongside prototypes (left) made from Unity Asset Store assets

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.formats.fbx@5.0/manual/index.html
https://blog.unity.com/games/realizing-rapid-conceptual-design-with-kitbashing?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://unity.com/case-study/guns-boom?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

95 of 112 | unity.com© 2023 Unity Technologies

Polybrush

Polybrush is a 3D sculpting tool, similar to terrain sculpting tools but for meshes.
It comes with modes to blend textures, color sculpt Meshes, and scatter objects
directly in the Unity Editor. Combined with ProBuilder, Polybrush gives you a
complete in-Editor level design solution to try different looks for your
environment during the design process.

The Polybrush window is found under the top tools bar next to the ProBuilder
menu. The main working modes are:

	— Sculpt: Use this option push and pull vertices and to shape the Mesh

	— Smooth: Averages the differences between vertex positions along an axis,
which is set by the Direction property in the settings; use this mode to
make jagged vertices on the Mesh more uniform

	— Color: Sets the vertex colors on a Mesh with a brush or a paint bucket

	— Texture: Paint and blend multiple Textures on Meshes

	— Scatter: Place or scatter Prefabs on the surface of your Mesh

Find this window under Tools > Polybrush >polybrush to paint textures on Meshes, among other options.

The Texture Paint mode requires the additional steps shown here, such as
ensuring you’re using a compatible material with texture blending on your mesh.

Make sure that your Material uses a shader that defines how it blends textures.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.polybrush@1.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.polybrush@1.1/manual/modes.html
https://docs.unity3d.com/Packages/com.unity.polybrush@1.1/manual/modes_texture.html

96 of 112 | unity.com© 2023 Unity Technologies

Let’s go through the steps shown in the images above:

1.	 Go to the Samples tab in the Polybrush Package Manager window. Get the
shader that corresponds to your render pipeline.

2.	 Right-click on the shader, and choose Create Material.

3.	 Add the textures that this material will use in its Inspector.

4.	 Polybrush will detect the material from the object and allow you to pick
which texture to paint. Note that you might need to save changes first.

Check out the following videos to learn how to use ProBuilder and Polybrush for
designing, prototyping, and artistically finishing a scene.

Make a Planet with Polybrush	

Faster iteration with ProBuilder and Polybrush

https://unity.com/
https://www.youtube.com/watch?v=QHslFO0vlGg
https://www.youtube.com/watch?v=GioRYdZbGGk

97 of 112 | unity.com© 2023 Unity Technologies

Quick tip: Visualizers

As explained earlier, you can communicate intent with your team through color
coding or using material libraries in ProBuilder. Developing games is complex,
and if you can present your prototyping ideas as clearly as possible to
colleagues, you can make informed decisions about what will and won’t work.
Here are a couple of additional tips for clear communication of your design
intent.

3D object text

Create floating signs in the 3D space via GameObject > 3D Object > Text >
TextMeshPro. These can act as virtual sticky notes that provide additional
information to your colleagues (and yourself) about the level design. Move,
scale, and group them under a parent GameObject for organizational purposes.

The 3D text object is easy to move around and resize in a white- or grey-box level design because it’s a standalone
element that is not a part of a UI system like the regular text labels.

Custom icon for GameObjects

Custom icons make GameObjects easy to identify, especially in a large game
world. Examples of how to use custom icons are at the start and end of a level, for
player and enemy spawn points, and hidden or secret areas. Custom icons can
also be used to quickly relay information, such as the health or status of a level
boss. You can change the icon from the Inspector, next to the GameObject name.
Learn more about gizmo visualization possibilities in this Unity Learn tutorial.

Customizing the appearance of the GameObject icon shown in the scene view

https://unity.com/
https://learn.unity.com/tutorial/creating-custom-gizmos-for-development-2019-2#5fa30655edbc2a0021921055

98 of 112 | unity.com© 2023 Unity Technologies

Splines

Introduced in Unity 2022 LTS, the Splines package enables you to create spline
paths in your game for rivers, roads, camera tracks, and other path-related
features. Depending on the type of environment you’re working on, splines can
be an important component for your level designs.

User interface design and
implementation in Unity

Grow your skills by learning to use .
UI authoring tools in Unity. In this 130+
page guide for artists, designers, and
developers, find tips and best practices
for building sophisticated interfaces with
Unity’s two UI systems, Unity UI and .
UI Toolkit.

Download the e-book

Examples of use cases for splines: a road through a forest, an animation path, tubes, or wire meshes; find other samples
showcasing all the possibilities in the Splines Package Manager page once it’s installed

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.splines@2.1/manual/index.html
https://resources.unity.com/games/user-interface-design-and-implementation-in-unity?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

99 of 112 | unity.com© 2023 Unity Technologies

The handles and controls for splines in Unity resemble vector or 3D drawing tools from well-known DCC applications.

.
Once you’ve created a spline, both programmers and artists can use it in
interesting ways. For example, programmers can read points of the spline and
use them in the game logic with the APIs.

The components available for leveraging splines are:

	— Spline Instantiate: Generate copies of an item along a spline. Use the
Instantiate component to create objects like fences, trees, stone
walkways, and so on.

	— Spline Animate: Move a GameObject along a spline. Use the Animate
component with cameras, characters, or in situations where you need .
to define movement in Unity.

	— Spline Extrude: Build a tube mesh along a spline. Use the Extrude component
to create and edit shapes like wires, pipes, ropes, noodles, and more.

Learn more about upcoming new features for Splines in this blog post.

Create a new spline via GameObject > Spline > Draw Splines Tool. A new
GameObject will be created in the Hierarchy with the Spline component
attached and the tooling ready to use.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.splines@1.0/api/index.html
https://blog.unity.com/engine-platform/building-better-paths-with-splines-in-2022-2?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

100 of 112 | unity.com© 2023 Unity Technologies

Terrain

The Unity Terrain Editor enables you to create realistic, optimized terrains. It’s a
good tool for creating organic, non-flat surface areas and can be used in
combination with the other level design tools that are covered in previous sections.

To start using the Terrain tools, create a terrain object via GameObject >3D
Object > Terrain. The Terrain component provides brushes for raising or
lowering the terrain wherever you paint the heightmap of the terrain with the
Paintbrush tool. Use it to hide portions of the terrain, add a stamp brush on top
of the current heightmap, or simply polish the terrain.

Terrain brushes and stamps help you create lifelike landscapes. As noted earlier, GIS data can be a great source of inspiration for terrain design.

Using a brush to create some elevations in the terrain; note that the Terrain Editor aims at modifying large-scale terrains,
meaning that the default settings are usually using large Unity unit numbers

Changes to the surface are reflected on the surface geometry of the terrain with
colliders, textures, or attached vegetation or trees reacting to the changes
automatically.

You can export a heightmap generated in the Terrain Editor, as seen in the image to the right, which belongs to the
terrain with a red border in the left image, or import external heightmaps. In this community video, you can learn about
how to import GIS or real-world data into Unity.

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/script-Terrain.html
https://www.youtube.com/watch?v=KiRq3SXhOc4

101 of 112 | unity.com© 2023 Unity Technologies

Beautiful landscapes with Terrain Tools

Terrain Tools Package video

The Terrain Editor includes settings to define draw distances of vegetation,
trees, or terrain, plus settings for controlling the terrain mesh resolution, lighting,
and wind effects.

Alongside the Terrain Editor, you can install the Terrain Tools package, which
adds additional terrain sculpting brushes and tools to your project for creating
vivid terrain assets.

Learn more about terrain tools in Unity with the following videos. You can also
import the sample scene in the Package Manager to learn how a finished scene
was created.

https://unity.com/
https://www.youtube.com/watch?v=smnLYvF40s4
https://www.youtube.com/watch?v=aExdxF4OKBo
https://docs.unity3d.com/Packages/com.unity.terrain-tools@5.0/manual/index.html

102 of 112 | unity.com© 2023 Unity Technologies

2D Tilemap

The 2D Tilemap Editor is installed with the 2D Project Template or from the
Package Manager. 2D Tilemap is a great feature for quick prototyping. Tilemap
offers a way to create a game world using small sprites, called tiles, placed on a
grid. Instead of laying out a game world that is one big image, you can split it
into brick-like chunks that are repeated through a whole level. 2D Tilemap
supports rectangular, isometric, and hexagonal tiles.

A brush tool makes it efficient to paint tiles on a grid, and you can add painting
rules using script. They also come with automatic collision generation for
efficient testing and editing.

The Tile palette window will hold all the tiles and tools to help you paint or edit
Tilemaps. Create a new Palette by clicking the Create New Palette button. A
dropdown window with options will appear. Give the palette a name, set its
options, click Create, and save it to a selected folder.

Using tilemaps to build a top-down game

Tile Palette window with a palette loaded

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/class-Tilemap.html
https://docs.unity3d.com/2022.2/Documentation/Manual/Tilemap-Palette.html

103 of 112 | unity.com© 2023 Unity Technologies

Tilemaps can help you prototype a 2D level efficiently. Add a Tilemap Collider
2D component to the Tilemap for physics. This will add colliders to each of the
tiles based on the collider type set in the Tile Asset.

You can add a Composite Collider 2D to combine the colliders into one, resulting
in smoother collision behavior with geometry set as Outline. The tiles will
behave like one continuous terrain rather than as individual tiles. This setup also
brings a slight performance boost. However, if you plan for your game to add or
remove tiles at runtime, you might want to keep a collider on each tile.

Remember to check the Used by Composite option on the Collider 2D
component, and set the Rigidbody 2D Type to static so it doesn’t fall.

Let’s look at the different Palette tools (the keyboard shortcuts are noted in
brackets).

Tile Palette tools

Now, add tiles to the palette. Drag a sprite (you will be prompted to create a Tile
Asset) or Tile Asset into the Palette window. You should now see your sprite in
the grid of the palette.

A prototype of a grid-based level with placeholder tiles; the green outline shows the collider boundaries

https://unity.com/

104 of 112 | unity.com© 2023 Unity Technologies

1.	 Selection (S): Click to select one tile or drag to select tiles .
within a rectangular area

2.	 Move (M): Move the selected tiles

3.	 Brush (B): Paint on an Active Tilemap (select one from the .
Active Tilemap dropdown) with the selected tile and brush

4.	 Fill Selection (U): Drag to fill a rectangular area using a selected tile

5.	 Tile Sampler (I): Pick a tile from a Tilemap, and set it as active to paint

6.	 Eraser (D): Delete tiles from a Tilemap

7.	 Fill (G): Fill an area with a tile (the area needs to be bordered .
with other tiles)

2D Tilemap extras

An additional package, 2D Tilemap Extras, contains extra scripts for Tilemaps
enabling new features such as rule tiles, animated tiles, and more.

One feature worth highlighting for level designers is the support for
GameObjects, which enables you to create a Tile palette consisting of any
Prefab, such as a 3D model, and use the 2D Tilemap grid to arrange those
GameObjects in the scene. This can be a powerful level design tool when your
game needs to follow a grid pattern.

Using 2D Tilemap to arrange GameObjects in the scene

To create your Tile Palette with GameObjects, change the Default Brush option
in the drop list to GameObject Brush, then drag a Prefab to the Cells > Element
0 > GameObject field. Use the brush to add this Prefab to the tile palette. When
done, change the GameObject field for another Prefab, and add it to the tile
palette. Repeat this process for as many GameObjects as you want to add to
the Tile Palette.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@3.1/manual/index.html

105 of 112 | unity.com© 2023 Unity Technologies

Pathfinding with AI Navigation

It’s very likely that your player or other NPCs need to navigate the world to reach
a destination. Apart from gameplay mechanics, seeing characters self-navigate
the world can help immerse players in your game.

The AI Navigation package (previously known as NavMesh) allows you to create
characters (called agents in the context of AI Navigation) that can intelligently
move around the game world, using navigation meshes that are created
automatically from your scene geometry.

Key components of AI Navigation: A NavMesh Agent, NavMesh Surface, NavMesh Obstacle, and NavMesh link

Easy pathfinding for character or NPCs with AI Navigation

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/index.html

106 of 112 | unity.com© 2023 Unity Technologies

The Navigation window: Agents and areas

In the top menu under Window > AI > Navigation you can set up agents or the
character types that will navigate the map and areas that are the preferred
paths for the agents.

Defining agents and areas for a project

The agent type defines the overall volume of the character, and, similar to the
Character Collider, it’s represented with a cylindrical shape. Step height defines
what’s the maximum vertical distance that the agent can step over, and Max
slope, as the name indicates, sets the boundary for the incline the agent can
climb. Agents can also jump from one mesh surface to another, allowing the
character to fall to a lower ground or jump to another area for example. Drop
height and Jump Distance define such parameters.

The agent type settings are used by AI navigation algorithms when you prepare
the navigable area in the NavMesh Surface component using the Bake button.

An example from the Unity documentation showing an area of a higher cost in purple color

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/CreateNavMeshAgent.html

107 of 112 | unity.com© 2023 Unity Technologies

The areas define how difficult it is to walk across a specific area, the lower-cost
areas will be preferred during pathfinding. In addition, each NavMesh Agent has
an Area Mask that can be used to specify on which areas the agent can move.

Use the component NavMeshModifier Volume to create a cubical area that you
can modify to define the area type. With the NavMeshModifier component
(enabling override area) to make a particular mesh object of a certain area type
or NavMeshLink which creates a navigable link between two locations, the link
can have a cost that corresponds to an area type. The different area types will
show different previsualization colors that you can set up from this menu.

Three steps to creating navigable paths with AI Navigation

1.	 Create a NavMesh surface: Define the surface that agents can navigate.
A quick way to do it is via GameObject>AI>NavMesh Surface. Select
Bake to generate the navigation data based on default parameters. Some
key settings of the NavMeshSurface component are:.
.
a. Agent Type: Create one NavMeshSurface per agent type that plans to
navigate the surface. Each agent will use different prebaked data based
on their settings. If you make changes to the agent type, you should Bake
the data again. .
.
b. Default Area: The default area type of the generated navigable surface;
as mentioned previously, there are modifiers that will override the default
type chosen here..
.
c. Generate Links: When enabled, navigation links will be generated to
allow the character jump or drop based on the agent parameters Jump
Distance and Drop Height..
.

In the left image, the NavMesh Surface is generated for the agent type that is colored yellow. Notice how the walkable
path (blue area) allows it to walk under each pillar of the bridge. On the left, the NavMesh Surface is generated for the
red agent type. Due to its size, its walkable path only allows it to pass through the wider spaces between the pillars.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/AreasAndCosts.html
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/NavMeshModifierVolume.html
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/NavMeshModifier.html
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/NavMeshLink.html

108 of 112 | unity.com© 2023 Unity Technologies

d. Use geometry: You can use the mesh’s information or physics collider
data to generate the surface..
.
e. Object collection: This allows you to filter which types of objects or
layers to use for the surface generation. By default, it will use all the
meshes in the scene. If you want to exclude a particular object’s mesh, you
can add the NavMesh Obstacle or NavMesh Modifier (remove object)
components..
.
f. Advanced: This gives you the option for fine-tuning the precision
required for the navmesh data..
.
g. Bake: This will process the data based on the settings here and the
agent type configuration, while Clear will clean the data.

2.	 Create a GameObject that will represent the character. You can follow the
example above and create a cylinder that corresponds to agent type size
and assign the NavMesh Agent component. Make sure the agent is set to
the type matching the NavMesh surface.

3.	 Test the navigation. You can add the component ClickToMove that comes
with the AI Navigation samples to the GameObject to make it move where
you click. You can also see the behavior or NavigationGoals to make NPCs
move from one point to another using AI Navigation.

Download and import the AI Navigation samples from the Package Manager

AI Navigation is compatible with ProBuilder and the Terrain Tools, and you can
also visualize the different navigable areas of the surface and other information
related to the agent type with the visualization tools.

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/CreateNavMeshAgent.html
https://docs.unity3d.com/Packages/com.unity.ai.navigation@1.1/manual/index.html

109 of 112 | unity.com© 2023 Unity Technologies

Level design tools quick reference

The following list consists of the tools covered in previous sections and
suggestions from the Unity Asset Store (organized by category). See this
section of the Unity Asset Store for specialized solutions for your particular
game genre.

Unity tool Description Where to get it

3D modeling, prototyping

ProBuilder Build, edit, and texture
geometry directly in Unity

Package Manager

Polybrush Mesh painting, sculpting, and
geo-scattering

Package Manager

Splines Build spline paths and tubular
3D meshes

Package Manager

UModeler Low-poly 3D modeling and
prototyping of environments

Unity Asset Store

TileWorldCreator 3 Available on the Asset Store

https://unity.com/
https://assetstore.unity.com/tools/level-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://assetstore.unity.com/tools/level-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://assetstore.unity.com/packages/tools/modeling/umodeler-80868

110 of 112 | unity.com© 2023 Unity Technologies

SabreCGS Build complex levels using
Constructive Solid Geometry
techniques

Unity Asset Store .
or GitHub

Terrain generation based on heightmaps

Terrain + Terrain tools Create large landscapes with
Terrain tiles; install the extras
for more brushes and tools

Package Manager

Gaia Pro Terrain and environment
generation tools

Unity Asset Store

Atlas Terrain Editor Non-destructive procedural
terrain creation

Unity Asset Store

Grid, tile-based design

2D Tilemap + .
Tilemap extras

Create 2D levels using tile
assets arranged on a grid;
also supports hexagonal and
isometric tiles and includes
special tile types such as rule
tiles and animated tiles

Package Manager

IntelliMap Pro 2D AI-generated tilemaps Unity Asset Store

TileWorld Creator Create 3D tile maps
procedurally or manually

Unity Asset Store

Tessera Pro Generate 3D levels based on
tile Prefabs

Unity Asset Store

Organization, placement, and snapping of Prefabs

Octave3D Collection of Prefab snap and
paint tools

Unity Asset Store

SmartBuilder Asset organization and
productivity

Unity Asset Store

Placer 2 Spawning of objects in Editor
or at runtime

Unity Asset Store

Grabbit Place objects with physics in
Editor

Unity Asset Store

https://unity.com/
https://en.wikipedia.org/wiki/Constructive_solid_geometry
https://assetstore.unity.com/packages/tools/modeling/sabrecsg-level-design-tools-47418
https://github.com/sabresaurus/SabreCSG
https://assetstore.unity.com/packages/tools/terrain/gaia-pro-2021-terrain-scene-generator-193476
https://assetstore.unity.com/packages/tools/terrain/atlas-terrain-editor-207568
https://assetstore.unity.com/packages/tools/level-design/intelimap-pro-236340
https://assetstore.unity.com/packages/tools/level-design/tileworldcreator-3-199383
https://assetstore.unity.com/packages/tools/level-design/tessera-pro-161077
https://assetstore.unity.com/packages/tools/level-design/octave3d-level-design-45021
https://assetstore.unity.com/packages/tools/level-design/smartbuilder-206777
https://assetstore.unity.com/packages/tools/level-design/placer-2-procedural-manual-level-designer-236629
https://assetstore.unity.com/packages/tools/utilities/grabbit-editor-physics-transforms-182328

111 of 112 | unity.com© 2023 Unity Technologies

Additional level design resources
There is no shortage of YouTube channels dedicated to level design topics. .
A few good ones to check out include Game Maker’s Toolkit, Steve Lee .
(Level and Game Design), and Level Design Lobby.

Unity user forums that level designers can benefit from joining include .
World Building Prefabs Unity and Cinemachine Unity.

Finally, you can find all of Unity’s advanced e-books for artists, designers, and
programmers, plus many other valuable resources in the Unity best practices hub.

Professional training for Unity creators
Unity Professional Training gives you the skills and knowledge to work more
productively and collaborate efficiently in Unity. Find an extensive training
catalog designed for professionals in any industry, at any skill level, in multiple
delivery formats.

All materials are created by experienced instructional designers in partnership
with our engineers and product teams. This means that you always receive the
most up-to-date training on the latest Unity tech.

Learn more about how Unity Professional Training can support you and your team.

https://unity.com/
https://www.youtube.com/c/MarkBrownGMT
https://www.youtube.com/c/SteveLee_GameDev
https://www.youtube.com/c/SteveLee_GameDev
https://www.youtube.com/c/LevelDesignLobby
https://forum.unity.com/forums/prefabs.158/
https://forum.unity.com/forums/cinemachine.136/
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook
https://unity.com/learn/professionals?utm_source=demand-gen&utm_medium=pdf&utm_campaign=expanded-worlds&utm_content=level-design-ebook

unity.com

https://unity.com/

